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Abstract

In this article, we study various widths/decompositions of binary structures
under the light of first difference principle. We show the equality of modular-
width and questionable-width, although questionable representation is more prim-
itive/crude than modular/clan decomposition. Using first difference principle, we
show that clique-decomposition of binary structures has a sequential equivalent,
that we call clique-questionable representation. Last but not least, we give remarks
on the true validity of rank-width of binary structures.
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1 Introduction
Apologies: We do science as a hobby, it is not our daily job and there is an impact on
the quality of the bibliography. For an unpublished work we did in 2015, we started
doing bibliographic search during 9 months, but all the gathered references were lost
when a hacker erased all our files on our laptop. Since then, we chose to publish our
ideas on arXiv and correct the bibliography afterwards. For preparing this article, we
have read entirely the book “The Theory of 2-structures” by Ehrenfeucht et al. (1999),
the thesis of Bui-Xuan (2008), and a few articles.

In this article, we study various width/decompositions of binary structures under
the light of first difference principle. First difference principle is the principle at the
heart of many mathematical objects:
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• lexicographic order, where it is used before any length consideration,

• hierarchic order, positional notation or positional numeral system, where it is
used after length consideration, etc.

Thus it is at least 5000 years old. To our knowledge, it was named “Principe de
première différence” by Sierpiński (1932). It was previously used by Hausdorff (1907)
for universal orders. The idea is simply to define a mathematical object with a sequence
of “smaller” (in most cases, finite) objects/items. Then two objects/sequences can be
compared, linked by a relation resp., according to the order, relation resp., between
the first different elements in the sequences. These objects defined by sequences are
in turn elements of (a set) another mathematical object, and at least one mathematical
property of these subobjects in these bigger object is faithfully preserved by these se-
quences of items under the first difference principle. Thus first difference principle is
used for binary structures : orders, graphs, (labelled) 2-structures. To our knowledge,
a “3-way” first difference principle (like we have 3-way merge for source code) is yet
to be defined, if it is possible (it should be first differences principle).

After studying first difference principle for orders in Lyaudet (2018) and Lyaudet
(2019), it was natural for us to consider that this principle could be used for binary
structures by applying Zermelo’s axiom three times. We illustrate this by showing how
to convert a labelled properties graph model used in graph databases into a labelled
2-structure (see Ehrenfeucht et al. (1999)).

Theorem 1.1. Testing if a logical formula using quantification over vertices or set
of vertices is true on a labelled properties graph is equivalent to testing if a logical
formula using quantification over vertices or set of vertices is true on a labelled 2
structure.

Proof:

This proof is written with examples and lacks rigour. It is intentional: The result is
easy, and this is the introduction.

Assume that you have enumerated all possible directed relations you have in some
labelled properties graph; for example, you have vertices representing persons, cars,
and addresses, and the following directed relations with properties:

• “is mother of” links a mother to its child with a property “age at birth” giving
the age of the mother when she gave birth to this child,

• “is father of” links a father to its child with a property “age at birth” giving
the age of the father when his wife gave birth to this child,

• “play tennis with” links two persons,

• “has home at” links a person to the address vertex corresponding to its home,

• “owns” links a person to its car with a property “buying date” and a property
“buying location”.

As a first step, you use Zermelo’s axiom (in the infinite case) a first time to list
all the combinations of a relation plus its properties that appear in the graph, like
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first combination is (“is mother of”, {“age at birth”: 31}), second combination is
(“is mother of”, {“age at birth”: 24}), third combination is (“has home at”, {}),
etc.

For the sake of efficiency, the first step of the transformation should depend of
the formula. For example, if you have a formula “there exists a person p such that,
(there exists a car c such that, p owns c) and (for all car c’, p owns c’ implies p
bought c’ before 2020/01/01)”, then you will first forget all edges corresponding to
the relations “is mother of”, “is father of”, “has home at”. Moreover you should
also forget all properties of “owns” except “buying date” (“buying location” has no
usefulness for the problem at hand). Thus you will enumerate only the combinations
(“owns”, {“buying date”: 2011/01/01}), (“owns”, {“buying date”: 2012/01/01}).
You have a ternary relation LinkedBy(x,y,comb) where x and y are vertices and
comb is the integer/ordinal corresponding to a combination of a relation plus its
properties. Assume that the combinations 1, 3, 4 are all the combinations of “owns”
relation, and that the combinations 1, 3 are all the combinations of “owns” relation
with buying date before 2020/01/01. So far, the formula becomes “there exists a per-
son p such that, (there exists a car c such that, LinkedBy(p,c,1) or LinkedBy(p,c,3)
or LinkedBy(p,c,4)) and (for all car c’, LinkedBy(p,c’,1) or LinkedBy(p,c’,3) or
LinkedBy(p,c’,4) implies LinkedBy(p,c’,1) or LinkedBy(p,c’,3))”.

Note that in these step and the two other steps coming next, we may use a dis-
jonction of an infinite number of atomic subformulas, when the binary structure is
infinite. We consider that the OR nodes/gates have unbounded fan-in. Thus the
depth of the formula only increases by 1.

As a second step, you use Zermelo’s axiom (in the infinite case) a second time
to list all the set of combinations of a relation plus its properties that appear be-
tween two vertices in the graph with the same in-vertex and out-vertex, like first
set of combinations is {(“play tennis with”, {})}, second set of combinations is
{(“play tennis with”, {}), (“is mother of”, {“age at birth”: 31})}, third set of com-
binations is {(“is mother of”, {“age at birth”: 24})}, fourth set of combinations is
{} (no relations), etc. Any couple (ordered pair) of vertices has a unique correspond-
ing set of combinations, and each set of combinations has at least one corresponding
couple of vertices.

We kept the description of the combinations for clarity but at this step, combi-
nations are already integers/ordinal numbers, like first set of combinations is {1},
second set of combinations is {1,5}, third set of combinations is {3}, fourth set of
combinations is {} (no relations), etc. Thus, it is easy to find duplicate sets using
lexicographic order and ordering combinations inside each set. You have a ternary
relation AdjacencySemiType(x,y,s) where x and y are vertices and s is the inte-
ger/ordinal corresponding to a set of combination of a relation plus its properties.

Back at our example, assume that the set of combinations 2, 5, 11 are all the set
of combinations containing “owns” relation, and that the set of combinations 2, 11
are all the set of combinations containing “owns” relation with buying date before
2020/01/01. So far, the formula becomes “there exists a person p such that, (there
exists a car c such that, AdjacencySemiType(p,c,2) or AdjacencySemiType(p,c,5)
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or AdjacencySemiType(p,c,11) ) and (for all car c’, AdjacencySemiType(p,c’,2)
or AdjacencySemiType(p,c’,5) or AdjacencySemiType(p,c’,11) implies Adjacency-
SemiType(p,c’,2) or AdjacencySemiType(p,c’,11) )”.

After using two times Zermelo’s axiom, we already have a labelled 2-structure
and a wealth of results starts to apply. Our example is not realistic because there
should be probably much more AdjacencySemiTypes than combinations.

Now, we need to apply Zermelo’s axiom a third time in order to use first dif-
ference principle. Indeed, the adjacency type of the couple (x,y) is the couple of
the two adjacency semi-types from x to y and from y to x. Again, we may fear
a quadratic increase in the number of adjacency types compared to the number of
adjacency semi-types, when enumerating them. Our formula may become “there
exists a person p such that, (there exists a car c such that, AdjacencyType(p,c,3) or
AdjacencyType(p,c,14) or AdjacencyType(p,c,111) ) and (for all car c’, Adjacency-
Type(p,c’,3) or AdjacencyType(p,c’,14) or AdjacencyType(p,c’,111) implies Adja-
cencyType(p,c’,14) or AdjacencyType(p,c’,111) )”. We now have what is called a
reversible labelled 2-structure. It is reversible because now the function that gives
the adjacency type from x to y has the property that whenever two couples of ver-
tices (x,y) and (x’,y’) have the same adjacency type, then the two couples of vertices
(y,x) and (y’,x’) have the same adjacency type.

Clearly, the formula has only been modified by substituting a disjunction of a
(probably high) number of atomic subformulas (AdjacencyType(x,y,t)) to a single
atomic subformula (e.g. p owns c’) in the original formula. Its main structure
remained the same.

We note that LinkedBy must be a ternary relation, but AdjacencyType and Ad-
jacencySemiTypes are equivalently ternary relations or binary functions. All three
are directed.

Last but no least, it is easy to see how to deal with multiple edges/arcs. On this re-
spect, if we have k arcs from x to y like “has won a tennis match against”, we keep
only one arc “has won a tennis match against” and we had a special property “mul-
tiplicity” of value k on this arc. If we had previous properties like (“has won a tennis match against”,
{“date”: 2020/01/01}), (“has won a tennis match against”, {“date”: 2020/01/01}),
and (“has won a tennis match against”, {“date”: 2020/01/03}), we cannot merge
the last with the two previous; we have (“has won a tennis match against”, {“date”:
2020/01/01, “multiplicity”: 2}), (“has won a tennis match against”, {“date”: 2020/01/03,
“multiplicity”: 1}). It does not change the three steps since we start from the com-
binations of a relation plus its properties, instead of bare relations.

If you think of labelled 2-structures as matrices, reversible labelled 2-structures are
somehow “weakly symmetric” matrices. We bought the book by Ehrenfeucht et al.
(1999) wanting to know if it was already known that “weakly symmetric” matrices/2-
structures are sufficient to study. In this book, they justify reversibility relatively to
clans but do not say a word of logical formulas that are marginally modified. The result
for clans unchanged under reversibility can be seen as a corollary of our theorem, since
clans can be defined using a formula using quantification over vertices only. Thus, it
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is clear that for many formulas and binary structures, we can use the first difference
principle and reversible labelled 2-structures. We wrote this theorem thinking it was
the most missing point in the introduction of Ehrenfeucht et al. (1999), in order to
justify the study subject.

Section 2 contains the proof of equivalence between modular-width and questionable-
width. In section 3, we show how clique-width belongs to the scope of first difference
principle. Section 4 concludes with remarks on rank-width of (reversible) (labelled)
2-structures.

2 Modular-width and questionable-width
We want to apologize to our readers of our previous articles on first difference princi-
ple. Probably, many of them already knew modular and clan decompositions, and they
immediately have seen that questionable-width was equivalent to modular/clan-width.
We did not work on modular decomposition previously and what we remembered of
talks about it was erroneously that you would decompose a graph/2-structure when
it was either disconnected (parallel node) or its complement was disconnected (series
node), stopping when both are connected. Our further readings corrected this mis-
take and we have seen that the modular/clan decomposition goes on under primitive
nodes. At this point, it was immediate to see that questionable-width was equivalent.
See Ehrenfeucht et al. (1999), and Habib and Paul (2010) for a survey on algorithmic
modular/clan-decomposition.

Consider a binary signature S of binary relations and functions. This is equivalent
to have a set of arcs with label and properties, as in labelled properties graph model
used in graph databases. Given a set S, an (S, S, k, l)-mapping-run is an (ordinal-
indexed) sequence (Si)i∈l of length l of S-structures of cardinality at most k, together
with a sequence of mappings from S to the domains of Si structures.

Definition 2.1 (Questionable representation). A questionable representation of a re-
versible labelled 2-structure S is a (A, S, k, l)-mapping-run, for some k and l, whereA
is its set of adjacency types, such that first difference principle applied to this mapping-
run yields the adjacencies of S. k is its width and l is its length. The questionable-width
of S is the minimum of the widths of its questionable representations.

The modular/clan-width is the maximum of the cardinals of the domains of quotient
graphs/2-structures that appear in primitive nodes of the modular/clan decomposition
of a given graph/2-structure. We fix the following convention that the modular/clan-
width of a graph/2-structure without primitive nodes in his modular/clan decomposition
is exactly two.

Under this convention, we have the following result.

Theorem 2.2. The questionable-width of a reversible labelled 2-structure is equal to
its clan-width.

Proposition 2.3. The questionable-width of a reversible labelled 2-structure S is at
most its clan-width.
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Proof:

We process the nodes of the clan-decomposition from the root to its leaves, the order
of the nodes is unimportant as long as the set of treated nodes is connected at any
step. At any step, we lengthen a sequence of hopefully small 2-structures Si, such
that any vertex of the 2-structure S is associated to exactly one vertex in each Si.
Our induction hypothesis is that if a node has been treated, then all vertices of the
2-structure that belongs to distinct branches below this node have their adjacency
types that are already set by first difference principle. Thus we obtain a questionable
representation at the final step.

If the current node to be treated is an α-complete node where α is a symmetric
adjacency type, or an α-linear node where α is an asymmetric adjacency type, we
add at the end of our current partial questionable representation a sequence of 2-
structures of size 2, their two vertices x0j and x1j having α adjacency type on the
couple (x0j , x

1
j ). If the number of nodes under the current node is k, we need dlg(k)e

such small 2-structures, and we associate to each vertex y of S under the current
node to x0j or x1j using the binary notation of the ordinal finite number corresponding
to the subnode containing y. (The binary notations must be padded on the left with
0s to have the same length.) All other vertices of S are associated to x0j , 1 ≤ j ≤
dlg(k)e.

If the current node to be treated is a primitive node, we add at the end of our
current partial questionable representation a 2-structures isomorphic to the quotient
2-structure at the primitive node. We associate to each vertex y of S under the
current node the vertex of its maximal prime clan in the quotient 2-structure. All
other vertices of S are associated to the same arbitrary vertex in the quotient 2-
structure.

Proposition 2.4. The questionable-width of a reversible labelled 2-structure is at least
its clan-width.

Proof:

Assume for a contradiction that there is a primitive node separating vertices x and y,
and that the 2-structure in the questionable representation, where the first difference
between x and y occurs, has size less than the cardinal of the quotient 2-structure
at the primitive node. We take such a pair of vertices x and y with minimum first
difference index. Clearly, without loss of generality, there must be some vertex z
that is in a subbranch below the primitive node; this subbranch is distinct of the
subbranches of x and y; and nevertheless x and z have the same image in the first
difference 2-structure. But then since the preimage of the image of x (and z) re-
stricted to the vertices below the primitive node is a clan of the substructure induced
by these vertices, it contradicts the fact that the quotient 2-structure was primitive.

The previous results solve the problem of optimizing the width of a questionable
representation. But there remains some open-problems :
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Open problem 2.5. Optimize the length of a questionable representation under opti-
mality of the width or a relaxed assumption on the width. (Without width constraint this
is obviously one.) Optimize the area (sum of the cardinals of the domains of the labelled
2-structures in the questionable representation) or the approximated area (length times
width) of a questionable representation, with or without width constraint.

Open problem 2.6. Some graphs admits questionable representations with logarith-
mic length, area, and approximated area, under optimal width constraint. Find equiv-
alent characterizations of such graphs. (All labelled 2-structures admits questionable
representations with linear length, area, and approximated area, under optimal width
constraint.)

Acccording to Ehrenfeucht et al. (1999), and Habib and Paul (2010), the origin of
modular/clan decomposition can be traced back to Gallai (1967). Putting it in the scope
of first difference principle, we go a few milleniums before but graphs and 2-structures
were not studied yet. It would be wrong to say that modular/clan decomposition can
be traced back to a few milleniums before, but we can say that a simple principle was
already known that could lead to it with some work.

3 Clique-width and first difference principle
A few years ago, we did not know much about 2-structures, and we generalized clique-
width with weighted graphs, the weights being over some field (see Flarup and Lyaudet
(2008)). When we read the book by Courcelle and Engelfriet (2012), it was a surprise
to see their generalization to labelled edge graphs using separate edge families. How-
ever the two generalizations are equivalent, may it be using ordinal weights for infinite
graphs, or rational numbers weights for finite binary structures. This is a consequence
of the theorem in introduction and of the following fact: with clique-width, you can add
all the edges between two vertices as soon as the two paths from the leaves correspond-
ing to two vertices to the root of the clique-decomposition joins the same node in the
decomposition; hence vertices coming from the same branch with distinct adjacency
types to a vertex of the other branch must have distinct clique-labels.

In order to find a sequential/first difference principle equivalent to clique-width
and clique decomposition, we need to introduce nyf-extended labelled 2-structures.
nyf is a constant special adjacency type meaning “not yet fixed”. Only reversible
labelled 2-structures appearing in decompositions may use this special adjacency type.
Its meaning is obvious, when the first difference between two vertices that occurs in
a nyf-extended labelled 2-structures, has the nyf-adjacency type between the images
of the two vertices then their adjacency type must be given by another difference later.
Thus, nyf-extended first difference principle is that the adjacency type is given by first
difference where adjacency type is not nyf .

There is a dual constant to nyf-extended labelled 2-structures. This is alf-extended
labelled 2-structures. alf is a constant special adjacency type meaning “already fixed”.
Only reversible labelled 2-structures to be decomposed may use this special adjacency
type. This is what is used to further decompose some reversible labelled 2-structure in
tree-questionable-width. (We introduced tree-questionable-width in Lyaudet (2019).)
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It is somewhat linked to bi-modular decomposition in this setting Fouquet et al. (2004).
We shall use it in a future article on classes of bounded balanced tree-questionable-
width, but not in this article.

A nyf-connected-component, resp. nyf-clique, in a nyf-extended labelled 2-structures
is simply a connected component, resp. a clique, in the underlying undirected simple
graph where nyf-adjacency corresponds to edges and everything else correspond to a
non-edge.

Definition 3.1 (Clique-questionable representation). A clique-questionable representa-
tion of a reversible labelled 2-structure S is a nyf −(A, S, k, l)-mapping-run, for some
k and l, where A is its set of adjacency types, such that:

(i) nyf-extended first difference principle applied to this mapping-run yields the
adjacencies of S;

(ii) the nyf-extended reversible labelled 2-structures must have the property that
there are exactly two nyf-connected-components, and that these nyf-connected-
components are nyf-cliques;

(iii) two vertices S that have a nyf-difference must have only nyf-differences until
they have a non-nyf-difference; they cannot be mapped to the same vertex again
until some non-nyf-difference occurs.

k is its width and l is its length. The clique-questionable-width of S is the minimum of
the widths of its clique-questionable representations.

Theorem 3.2. The clique-questionable-width of a reversible labelled 2-structure is
between its clique-width and two times its clique-width.

Proposition 3.3. The clique-questionable-width of a reversible labelled 2-structure S
is at most two times its clique-width.

Proof:

Without loss of generality, we may assume that all edges are added in the clique-
decomposition as soon is possible, using the compact clique-algebra (Courcelle and
Engelfriet (2012)). Moreover, at the cost of doubled clique-width, we assume that
when two branches joins in the clique decomposition, their port labels are disjoint.
We process the (compact-)nodes of the clique-decomposition from the root to its
leaves, the order of the nodes is unimportant as long as the set of treated nodes is
connected at any step. At each step, we lengthen a sequence of hopefully small
nyf-extended labelled 2-structures Si, such that any vertex of the 2-structure S is
associated to exactly one vertex in each Si, respecting condition (iii) above. More-
over, each Si is the union of two nyf-cliques. Our induction hypothesis is that if
a node has been treated, then all vertices of the 2-structure that belongs to distinct
branches below this node have their adjacency types that are already set by nyf-
extended first difference principle (condition (i’)), and conditions (ii) and (iii) are
respected. Thus we obtain a clique-questionable representation at the final step.

Since the compact clique-algebra yields a single type of nodes (no need to han-
dle the leaves corresponding to isolated vertices), the induction is straight-forward.
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We add a nyf-extended labelled 2-structures Si made of two nyf-cliques, the first
nyf-clique having as much vertices as port labels in the left branch, the second
nyf-clique having as much vertices as port labels in all the clique-decomposition
(condition (ii) is satisfied). The mapping of vertices from S to Si associates all
vertices below the current node to the vertex corresponding to its port label (under
the current node) in the nyf-clique corresponding to its branch; other vertices are
associated to the vertex corresponding to its port label (under the last corresponding
node treated) in the nyf-clique of Si having all port labels. The adjacency types
in Si between the two nyf-cliques are the ones corresponding to the node of the
clique-decomposition with the additional no-edge default adjacency type explicitly
set, when the compact-node adds nothing between two port labels sets of vertices.
Clearly condition (i’) is satisfied. To see that condition (iii) is satisfied, we observe
that:

• for all vertices below the current node, condition (iii) is true between two ver-
tices in the same branch below the current node, because it was true previously,
and no renaming operation may give distinct port labels if they had the same
port label below the node; two vertices in distinct branch have now distinct
port labels and an adjacency type set;

• for all other vertices, condition (iii) was satisfied previously, and nothing changed
with the previous step with respect to being mapped to the vertex or not;

• for a vertex below the current node and a vertex not below, condition (iii) was
satisfied previously, and they have already a non-nyf difference, hence it will
never be unsatisfied in the future.

Q.E.D.

Proposition 3.4. The clique-questionable-width of a reversible labelled 2-structure is
at least its clique-width.

Proof:

Given a clique-questionable representation, we construct a (compact)-clique de-
composition of same width in a top-down manner. First, using a number of port
labels equal to the width of the clique-questionable representation, we assign a
distinct port label to each vertex of Si, for all i; this choice is completely arbi-
trary as long as two distinct vertices of the same Si have distinct port labels. At
each step, we maintain a set of subsets of S, {Xj}, that have already been split-
ted, all adjacency types between distinct Xj , Xj′ being already fixed both by the
beginning of clique-questionable representation and the in-construction (compact-
)clique-decomposition. EachXj corresponds to a leaf of the in-construction (compact-
)clique-decomposition. Before first step, {Xj} = {S}. For each (step) Si item in
the clique-questionable representation, consider the substructure (substep) Si,j of
Si restricted to the image of Xj . If Si,j is included in one of the two nyf-cliques,
then this substep is finished. Otherwise Si,j is made of two parts Si,j,0 and Si,j,1

corresponding to the two nyf-cliques. We replace the leaf corresponding toXj with
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a node that renames the port labels of the vertices in Si,j into the port labels of
Xj vertices at the substep Xj was created (we can do so with respect to distinct
vertices in the same Si,j,b thanks to condition (iii)); under this node we add adding
adjacency type operations/nodes to reflect Si,j (this is easy since all port labels are
distinct); last we had a disjoint union node separating two leaves corresponding to
Xj,0, Xj,1 the domains of Si,j,0, Si,j,1. (The nodes created at a substep can trivially
be grouped into a compact-node.) It is trivial to see that the clique-decomposition
obtained constructs the same labelled 2-structure as the clique-questionable repre-
sentation, and does not use more port labels than its width.

Proposition 3.3 can not be improved unless Proposition 2.105 (4) in Courcelle and
Engelfriet (2012) can be improved. (We do not think it can.) First difference principle,
as we use it, is totally “adjacency type impartial”, it does not make any difference be-
tween some default adjacency type such as no-edge and other adjacency types. It has
the advantage that all results apply under any injective mapping from a set of adjacency
types to another. Hence, the two previous definitions also define the questionable-width
and the clique-questionable-width of a 2-structure instead of a labelled 2-structure. It
would be possible to shrink (clique-)questionable representations in some cases, with
the convention that, when no two differences occurs, a default adjacency type is given.
Non-edges gives an example of such a symmetric default adjacency type. Lexico-
graphic order gives an example of such an asymmetric default adjacency type, using
the length to determine the orientation. We do not study further this topic yet because
we think that as the saying goes “Explicit is better than implicit”, and “Premature
optimization is the root of all evil” (Knuth). Further research may prove us wrong.
Courcelle generalized clique-decompositions to countable graphs/labelled 2-structures.
nyf-extended first difference principle and clique-questionable representation give us
an alternative for reversible (labelled) 2-structures of any cardinality.

In light of the introductory theorem and the “good behaviour” of clique-width and
monadic second order logic with vertex quantification, it was an easy guess that first
difference principle may have a link with clique-width.

Déjà vu:

Open problem 3.5. Optimize the length of a clique-questionable representation under
optimality of the width or a relaxed assumption on the width. (Without width constraint
this is obviously one.) Optimize the area (sum of the cardinals of the domains of the
labelled 2-structures in the clique-questionable representation) or the approximated
area (length times width) of a clique-questionable representation, with or without width
constraint.

Open problem 3.6. Some graphs admits clique-questionable representations with log-
arithmic length, area, and approximated area, under optimal width constraint. Find
equivalent characterizations of such graphs. (All labelled 2-structures admits question-
able representations with linear length, area, and approximated area, under optimal
width constraint.)
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4 Rank-width of labelled 2-structures
In 2008, we were working to extend the results of Barvinok (1996) and Flarup and
Lyaudet (2008). Barvinok showed that if the underlying matrix has bounded rank, both
the permanent and the hamiltonian polynomials can be evaluated in polynomial time;
we showed a similar result for bounded weighted clique-width matrices. We hoped to
show that the permanent of a bounded rank-width matrix can be computed in polyno-
mial time. Our opinion at that time was that rank-width was a kind of algebraic trick to
“compress” clique-width. We did not know whether rank-width and clique-width are
still equivalent over any arbitrary field. We talked about this subject with Frédéric Ma-
zoit, who talked about it to Michaël Rao, who gave us the following example in 2010:
Consider a finite set of vertices, each associated to a distinct strictly positive integer,
giving the matrix over Q where the edge weight between vertices i and j is i× j. This
matrix has rank 1, hence has rank-width 1. But it should have clique-width around
n/2, where n is the number of vertices. We can modify this example to guaranty that
all edges are distinct: Consider a finite set of vertices, each associated to a distinct
prime number pi (We have a symmetric 2-structure). Or even that all arcs are distinct:
cell i, j has weight p2i × pj (We have an asymmetric reversible 2-structure).

After that, our opinion on rank-width was that we should not be talking about equiv-
alence between rank-width and other widths with too much confidence because rank-
width lives in his own realm. It is able to capture “too predictable chaos” when all
adjacencies are distinct.

At the light of first difference principle and “adjacency type impartiality”, we think
we should not focus on the algebraic meaning of rank-width. Instead we should feel
free to compute the rank-width of any (labelled) 2-structure with an arbitrary injec-
tive mapping from its adjacency types to values in some arbitrary field. It yields two
new widths of (labelled) 2-structures: maximum rank-width under injective mapping,
and minimum rank-width under injective mapping. We have the corresponding open-
problems:

Open problem 4.1. For (finite) (labelled) 2-structures, what are the fields on which
the maximum rank(-width) under injective mapping is obtained. Is it true for finite
2-structures that an injective mapping maximizing rank(-width) always exists over Q?
Find algorithms in the finite case.

Open problem 4.2. For (finite) (labelled) 2-structures, what are the fields on which
the minimum rank(-width) under injective mapping is obtained. Is it true for finite
2-structures that an injective mapping minimizing rank(-width) always exists over the
smallest prime field of cardinality at least the number of adjacency types of the 2-
structure? Find algorithms in the finite case.

Open problem 4.3. Is it true that clique-width of 2-structures is closely equivalent to
their maximum rank-width under injective mapping?

Open problem 4.4. Rank-width is able to capture “too predictable chaos”, but min-
imum rank-width under injective mapping do capture “too predictable chaos”. What
kind of logic is suited for that? For example, it is clear that first order model checking is

11



trivial on a 2-structure where all adjacency types are distinct, at least if the formula has
no disjunction between adjacency types possible for some couple of quantified vertices
in it.
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