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Abstract

In this article, we study various widths/decompositions of binary structures
under the light of first difference principle. We show the equality of modular-
width and questionable-width, although questionable representation is more prim-
itive/crude than modular/clan decomposition. Using first difference principle, we
show that clique-decomposition of binary structures has a sequential equivalent,
that we call clique-questionable representation. Last but not least, we give remarks
on the true validity of rank-width of binary structures.
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1 Introduction
Abstract of the introduction: Be functional (pun intended). To obtain a matrix apply
Zermelo’s axiom two times. To obtain a reversible matrix apply Zermelo’s axiom one
more time.

Apologies: We do science as a hobby, it is not our daily job and there is an impact
on the quality of the bibliography. For an unpublished work we did in 2015, we started
doing bibliographic search during 9 months, but all the gathered references were lost
when a hacker erased all our files on our laptop. Since then, we chose to publish our
ideas on arXiv and correct the bibliography afterwards. For preparing this article, we
have read entirely the book “The Theory of 2-structures” by Ehrenfeucht et al. (1999),
the thesis of Bui-Xuan (2008), and a few articles.

∗https://lyaudet.eu/laurent/, laurent.lyaudet@gmail.com
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In this article, we study various widths/decompositions of binary structures under
the light of first difference principle. First difference principle is the principle at the
heart of many mathematical objects:

• lexicographic order, where it is used before any length consideration,

• hierarchic order, positional notation or positional numeral system, where it is
used after length consideration, etc.

A simple example is to compare the integers 111 and 143. We will look at the first
difference between 111 and 143 since they have the same length/number of digits. It
occurs on position 2 where we have to compare the digit 1 with the digit 4. Thus
it is at least 5000 years old. To our knowledge, it was named “Principe de première
différence” by Sierpiński (1932). It was previously used by Hausdorff (1907) for uni-
versal orders. The idea is simply to define a mathematical object with a sequence of
“smaller” (in most cases, finite) objects/items/digits. Then two objects/sequences can
be compared, linked by a relation resp., according to the order, relation resp., between
the first different elements in the sequences. These objects (for example, integers)
defined by sequences (for example, of decimal digits) are in turn elements of (a set)
another mathematical object (for example, N), and at least one mathematical property
(for example, order) of these subobjects (for example, integers) in these bigger object
(for example, N) is faithfully preserved by these sequences of items (for example, of
decimal digits) under the first difference principle. Thus first difference principle is
used for binary structures : orders, graphs, (labelled) 2-structures. To our knowledge,
a “3-way” first difference principle (like we have 3-way merge for source code) is yet
to be defined, if it is possible (it should be first differences principle).

After studying first difference principle for orders in Lyaudet (2018) and Lyaudet
(2019), it was natural for us to consider that this principle could be used for binary
structures by applying Zermelo’s axiom three times. The third application of Zermelo’s
axiom yielding a reversible binary structure. We illustrate this by showing how to con-
vert a labelled properties graph model used in graph databases into an edge-coloured
directed simple graph. These graphs are studied under different names like labelled
directed graphs or labelled 2-structure (see Ehrenfeucht et al. (1999)).

We first present our logical framework that is slightly unconventional: (graph the-
ory?) logic uses more frequently relations than functions; for example, a graph using
coloured edges where there are at most k distinct colours will be represented by k dis-
tinct binary relations; we adopt a “functional” point of view on graphs that is closer
to matrices; thus a k-edge-coloured graph will use a single binary function with k
distinct values, a relation being a function with true, false values. Usually in logic,
almost everything goes in the universe/domain of the logical structure to be studied,
except for the logical values true, false, the logical quantifiers and connectives, and the
relations/functions of the structure. The functional point of view makes appear more
clearly that, for many use cases, the universe of the structure can be split between:

• an internal domain made of the “true/real” elements of the structure, like vertices
and edges for graphs/binary structures,

• an external domain made of auxiliary elements like the k distinct values of the
adjacency function used for k-edge-coloured graphs.
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Our goal will be to use the class of the ordinals as a standard external domain (further
restricted to the set of integers when possible, for example if the number of vertices of
the binary structure is finite).

We stress that we do not want to solve the whole theory of the ordinals or of the
integers, when we are studying some particular binary structure. It is an external prob-
lem. No existential or universal quantification over elements of the external domain
must occur in logical formulas we will study.

Consider a binary signature S of unary or binary relations and functions. A logical
structure with an internal domain and an external domain using this signature, such
that the domain of relations and functions is in the internal domain and the image set
of functions is in the external domain is what we call a binary structure. With the func-
tional point of view in mind, we consider that relations are functions with values 0 for
false or 1 for true. Thus, without loss of generality we have only functions. We will use
the term properties for unary functions as is standard for unary relations, and we will
use the term adjacencies for binary functions. Hence, S = ((Pi)i∈α, (Aj)j∈β), where
(Pi)i∈α are the properties indexed by the ordinal α, and (Aj)j∈β are the adjacencies
indexed by the ordinal β. Because of the functional point of view, the atomic formulas
must use an equality, an inequality, or an external binary relation like an order relation,
between the result of a function and a constant of the image set of the function: for
example, P (x) becomes P (x) = 1, ¬P (x) becomes P (x) = 0. For example, we
can have for edge-weighted graphs atomic formulas like A(x, y) = 3, A(x, y) ≤ 12,
etc. It is assumed for practical purposes that evaluating such “atomic formulas” will
always be very efficient, the equality or other provided relations on the external domain
being trivial to evaluate. In this respect, practical cases may use more complex atomic
formulas: comparing two functions values like A(x, y) ≤ A(x, z), or using simple
arithmetic over the integers, for example. We present limited results but it should be
clear that the allowed atomic formulas could/should be extended with further work.

Having a set of arcs with label and properties, as in labelled properties graph model
used in graph databases is an example of binary structures. We explain further this
point: Consider a graph database using labelled properties graph model, where you
have vertices representing persons, cars, and addresses, and the following directed re-
lations with properties:

• “is mother of” links a mother to its child with a property “age at birth” giving
the age of the mother when she gave birth to this child,

• “is father of” links a father to its child with a property “age at birth” giving the
age of the father when his wife gave birth to this child,

• “play tennis with” links two persons,

• “has home at” links a person to the address vertex corresponding to its home,

• “owns” links a person to its car with a property “buying date” and a property
“buying location”.

The corresponding internal domain will be made of the vertices and the arcs of this la-
belled properties graph. (For this example, the adjacencies functions will be “inciden-
cies” functions but later on what will remain will be adjacencies.) We have 3 properties
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that apply to vertices : “is a person”, “is a car”, “is an address”. We may have other
properties that apply to vertices like : “birth date” (the domain of “birth date” should
be a subset of the domain of “is a person”), etc. We have two adjacency functions (but
they are semantically incidency functions in the labelled properties graph, we started
with): In, and Out, linking an arc with its in-vertex, resp. out-vertex. The name of
the directed relations is transformed into a special arc property “relation name”. Thus,
if Isabelle is the mother of Charles, we have a vertex Isabelle, a vertex Charles, an
arc a, the property “is a person” is true on Isabelle and Charles, the adjacencies of
In(a, Isabelle) and Out(a,Charles) are true, relation name(a) = is mother of
and we may have age at birth(a) = 31. Other arc properties in the labelled properties
graph are expressed by properties defined on a subset of the arcs. We have the “null”
constant when we want to express that the property is not stored in the graph database
for some vertex or arc. For example, we may have buying location(a) = null on the
arc between Cécile and her car, because she inherited her car from her passed away
grand-mother.

Monadic second order logic allows universal and existential quantification over el-
ements of the internal domain and set of elements of the internal domain. Monadic
second order logic with (internal) domain restricted to vertices and a single adjacency
relation Adj is usually denoted by MS1. The Adj relation is symmetric when the sim-
ple graph is symmetric, arbitrary when the simple graph is directed. We extend MS1
into PMS1 by allowing (external) properties (unary functions) on vertices. Monadic
second order logic with (internal) domain restricted to vertices and edges and a sin-
gle incidency relation Inc is usually denoted by MS2. The Inc relation is replaced
by the couple of incidency relations In and Out when the (multi) graph is directed.
We extend MS2 into PMS2 by allowing (external) properties (unary functions) on ver-
tices and edges. Thus, PMS2 is suited for labelled properties graph model of graph
databases. A matrix or arcs-coloured simple graph or labelled 2-structure can be stud-
ied, for example, with monadic second order logic with (internal) domain restricted to
vertices and a single adjacency external function Adj with values over the ordinals, we
will denote it by FMS1, or FPMS1 when we have additional properties on the vertices.
We will define an intermediate logic PMS1.1 between PMS1 and PMS2; it uses an in-
ternal domain made of vertices and edges; it captures many queries on graph databases
and has the nice property that any problem expressed in PMS1.1 over a binary structure
S can be solved on a equivalent reversible matrix S′ with internal domain equal to the
vertices in the internal domain of S using an equivalent formula in FMS1 or FPMS1
when there was additional (external) properties on the vertices.

Note that PMS2 is equivalent to FPMS2, since external functional values over
the incidencies functions In and Out can be replaced by two external edge properties
in functional value and out functional value.

Clearly, any problem expressed on a binary structure S using monadic second or-
der logic with quantification of elements and subsets of its internal domain can be
expressed using PMS2 on the incidencies structure I(S) obtained from S (if S already
had vertices and edges of a graph as its internal domain, these vertices and edges be-
come the new vertices, and the incidency relationships between them become the new
edges). Thus we can always restrict ourselves to two relational adjacencies/incidencies
and a set of functional properties.
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Definition 1.1 (Adjacency selector). An adjacency selector AS(x, y) is a PMS2 for-
mula with two free variables x and y that must be vertices, such that:

• it starts with a single existential quantifier over an arc a (∃a),

• then it fixes that x and y are the in-vertex and the out-vertex of a (In(a, x) ∧
Out(a, y)),

• then it gives constraints on the properties of a using a (possibly empty) subfor-
mula using only atomic formulas (like Pi(a) = c, Pi(a) 6= c, Pi(a) < c, or
R(Pi(a), c), where c is an external constant and R is a binary relation over the
external domain only, for some i ∈ α, etc.), ¬,∧,∨.

AS(x, y) = ∃a, In(a, x)∧Out(a, y)∧(age at birth(a) = 31∨age at birth(a) > 33)

is an example of an adjacency selector.

Definition 1.2 (PMS1.1). A PMS2 formula F is a PMS1.1 formula, if:

• whenever there is an existential quantification over an arc in F , then the subfor-
mula rooted on this existential quantification is an adjacency selector,

• whenever there is an universal quantification over an arc in F , then the sub-
formula rooted on this universal quantification is the negation of an adjacency
selector.

A PMS1.1 formula F is in existential form if there is no universal quantification over
an arc in it. (Using negation it is trivial to have PMS1.1 formula in existential form.)

Theorem 1.3. Testing if a PMS1.1 formula is true on a labelled properties graph G is
equivalent to testing if a FPMS1 formula is true on a reversible labelled 2-structure
S with internal domain equal to the vertices of G and external domain equal to some
ordinal. G may be infinite in which case the internal domain of S is also infinite, but it
may still be the case that the external domain is finite. The logic is reduced to FMS1 if
there was no external property on vertices in G.

Proof:

This proof is written with examples and lacks rigour. It is intentional: The result is
easy, and this is the introduction.

Let F be a PMS1.1 formula. Without loss of generality, we assume that F is
in existential form. Assume that you have enumerated all possible directed rela-
tions you have in some labelled properties graph; for example, you have vertices
representing persons, cars, and addresses, and the following directed relations with
properties:

• “is mother of” links a mother to its child with a property “age at birth” giving
the age of the mother when she gave birth to this child,

• “is father of” links a father to its child with a property “age at birth” giving
the age of the father when his wife gave birth to this child,
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• “play tennis with” links two persons,

• “has home at” links a person to the address vertex corresponding to its home,

• “owns” links a person to its car with a property “buying date” and a property
“buying location”.

As a first step, you use Zermelo’s axiom (in the infinite case) a first time to list all the
combinations of a relation plus its properties that appear in the graph, like first com-
bination is {(“relation name”, “is mother of”), (“age at birth”, 31)}, {(“relation name”,
“is mother of”), (“age at birth”, 24)}, third combination is (“has home at”, {}),
etc. Each combination describes the corresponding set of arcs. A person famil-
iar with graph databases would probably be more familiar with a notation close to
Python like (“is mother of”, {“age at birth”: 24}), or {“relation name”:‘is mother of”,
“age at birth”: 24}, instead of {(“relation name”, “is mother of”), (“age at birth”,
24)}. We use a notation respecting the mathematical meaning of parentheses for
tuples/sequences and brackets for sets, instead of introducing “dictionaries” or “as-
sociative arrays”.

For the sake of efficiency, the first step of the transformation should depend on
the formula. For example, if you have a formula “there exists a person p such that,
(there exists a car c such that, p owns c) and (for all car c’, p owns c’ implies
p bought c’ before 2020/01/01)”, then you will first forget all edges correspond-
ing to the relations “is mother of”, “is father of”, “has home at”. Moreover you
should also forget all properties of “owns” except “buying date” (“buying location”
has no usefulness for the problem at hand). Because these relations and proper-
ties have no impact on the adjacency selectors of the formula at hand. Thus you
will enumerate only the combinations {(“relation name”, “owns”), (“buying date”,
2011/01/01)}, {(“relation name”, “owns”), (“buying date”: 2012/01/01)}, for ex-
ample. You have a ternary relation LinkedBy(x,y,comb) where x and y are vertices
(internal domain) and comb is the integer/ordinal (external domain) correspond-
ing to a combination of a relation plus its properties. Assume that the combi-
nations 1, 3, 4 are all the combinations of “owns” relation, and that the combi-
nations 1, 3 are all the combinations of “owns” relation with buying date before
2020/01/01. So far, the formula becomes “there exists a person p such that, (there
exists a car c such that, LinkedBy(p,c,1) or LinkedBy(p,c,3) or LinkedBy(p,c,4))
and (for all car c’, LinkedBy(p,c’,1) or LinkedBy(p,c’,3) or LinkedBy(p,c’,4) im-
plies LinkedBy(p,c’,1) or LinkedBy(p,c’,3))”.

Note that in this step and the two other steps coming next, we may use a dis-
jonction of an infinite number of atomic subformulas, when the binary structure is
infinite. We consider that the OR nodes/gates have unbounded fan-in. Thus the
depth of the formula cannot increase since any adjacency selector has depth at least
3, and we replaced the adjacency selectors with subformulas of depth 2 (the logical
connectives “and”, “or”, “not” in the adjacency selector are mapped to set oper-
ations intersection, union, and complement respectively on the set of all possible
combinations).

As a second step, you use Zermelo’s axiom (in the infinite case) a second time to
list all the set of combinations of a relation plus its properties that appear between
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two vertices in the graph with the same in-vertex and out-vertex, like first set of com-
binations is {{(“relation name”, “play tennis with”)}}, second set of combinations
is {{(“relation name”, “play tennis with”)}, {(“relation name”, “is mother of”),
(“age at birth”, 31)}}, third set of combinations is {{(“relation name”, “is mother of”),
(“age at birth”, 24)}}, fourth set of combinations is {} (no relations), etc. Any cou-
ple (ordered pair) of vertices has a unique corresponding set of combinations, and
each set of combinations has at least one corresponding couple of vertices.

We kept the description of the combinations for clarity but at this step, combi-
nations are already integers/ordinal numbers, like first set of combinations is {1},
second set of combinations is {1,5}, third set of combinations is {3}, fourth set of
combinations is {} (no relations), etc. Thus, it is easy to find duplicate sets using
lexicographic order and ordering combinations inside each set. You have a ternary
relation AdjacencySemiType(x,y,s) where x and y are vertices (internal domain) and
s is the integer/ordinal (external domain) corresponding to a set of combinations of
a relation plus its properties.

Back at our example, assume that the set of combinations 2, 5, 11 are all the set
of combinations containing “owns” relation, and that the set of combinations 2, 11
are all the set of combinations containing “owns” relation with buying date before
2020/01/01. So far, the formula becomes “there exists a person p such that, (there
exists a car c such that, AdjacencySemiType(p,c,2) or AdjacencySemiType(p,c,5)
or AdjacencySemiType(p,c,11) ) and (for all car c’, AdjacencySemiType(p,c’,2)
or AdjacencySemiType(p,c’,5) or AdjacencySemiType(p,c’,11) implies Adjacency-
SemiType(p,c’,2) or AdjacencySemiType(p,c’,11) )”.

After using two times Zermelo’s axiom, we already have a matrix/edge-coloured
simple graph/labelled 2-structure and a wealth of results starts to apply. Our exam-
ple is not realistic because there should be probably much more AdjacencySemi-
Types than combinations.

Now, we need to apply Zermelo’s axiom a third time in order to use first dif-
ference principle. Indeed, the adjacency type of the couple (x,y) is the couple of
the two adjacency semi-types from x to y and from y to x. Again, we may fear
a quadratic increase in the number of adjacency types compared to the number of
adjacency semi-types, when enumerating them. Our formula may become “there
exists a person p such that, (there exists a car c such that, AdjacencyType(p,c,3) or
AdjacencyType(p,c,14) or AdjacencyType(p,c,111) ) and (for all car c’, Adjacency-
Type(p,c’,3) or AdjacencyType(p,c’,14) or AdjacencyType(p,c’,111) implies Adja-
cencyType(p,c’,14) or AdjacencyType(p,c’,111) )”. We now have what is called a
reversible labelled 2-structure. It is reversible because now the function that gives
the adjacency type from x to y has the property that whenever two couples of ver-
tices (x,y) and (x’,y’) have the same adjacency type, then the two couples of vertices
(y,x) and (y’,x’) have the same adjacency type.

Clearly, the formula has only been modified by substituting a disjunction of a
(probably high) number of atomic subformulas (AdjacencyType(x,y,t)) to a single
adjacency selector (e.g. p owns c’) in the original formula. Its main structure re-
mained the same.
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We note that LinkedBy must be a ternary relation, but AdjacencyType and Adja-
cencySemiTypes are equivalently ternary relations or binary external functions. All
three are directed.

Last but no least, it is easy to see how to deal with multiple edges/arcs. On this
respect, if we have k arcs from x to y like “has won a tennis match against”, we
keep only one arc “has won a tennis match against” and we had a special prop-
erty “multiplicity” of value k on this arc. If we had arcs with properties values
like {(“relation name”, “has won a tennis match against”), (“date”, 2020/01/01)},
{(“relation name”, “has won a tennis match against”), (“date”, 2020/01/01)}, and
{(“relation name”, “has won a tennis match against”), (“date”, 2020/01/03)}, we
cannot merge the last with the two previous; we have {(“relation name”, “has won a tennis match against”),
(“date”, 2020/01/01), (“multiplicity”, 2)} and {(“relation name”, “has won a tennis match against”),
(“date”, 2020/01/03), (“multiplicity”, 1)}. It does not change the three steps since
we start from the combinations of a relation plus its properties, instead of bare rela-
tions.

If you think of labelled 2-structures as matrices, reversible labelled 2-structures are
somehow “weakly symmetric” matrices (but not necessarily skew symmetric since we
may have many symmetric adjacency types). We bought the book by Ehrenfeucht et al.
(1999) wanting to know if it was already known that “weakly symmetric” matrices/2-
structures are sufficient to study. In this book, they justify reversibility relatively to
clans but do not say a word of logical formulas that are marginally modified. The result
for clans unchanged under reversibility can be seen as a corollary of our theorem, since
clans can be defined using a formula using quantification over vertices only. Thus, it
is clear that for many formulas and binary structures, we can use the first difference
principle and reversible labelled 2-structures. We wrote this theorem thinking it was
the most missing point in the introduction of Ehrenfeucht et al. (1999), in order to
justify the study subject.

We note that the previous proof can be done considering a set of labelled properties
graph instead of a single graph. From a mathematical point of view, we will still
use Zermelo’s axiom three times, each step with probably much more combinations,
adjacency semi-types, or adjacency types since we must gather all such possibilities on
all graphs in the considered set of graphs. In that case, we may have an infinite graph
yielding a finite formula and an infinite family of graphs yielding an infinite formula,
for example.

It is not hard to find formulas with quantification over arcs that are not adjacency
selectors for which the adjacency type trick yields the same theorem. (Consider a
formula that decides if there are at least two distinct arcs from the vertex x to the
vertex y. Clearly the adjacency type between x and y determines if it is true or false.)
Thus, with some work PMS1.1 logic may be replaced by PMS1.2, PMS1.3, etc. logics
to be defined in the future (each step closer to PMS2 logic).

We note also that the proof of our theorem uses only the restriction of quantification
over the edges and the external domain (adjacency selectors for edges, no quantification
for the external domain). Thus, it is also true for first order quantification over the
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vertices or second order quantification over the vertices, etc. Quantification over the
vertices is left unmodified between the original formula and the final formula.

Whenever our theorem yields some finite labelled 2-structure(s) with a finitely
bounded number of edge colours, we can further use Theorem 3.9 in Courcelle (2006),
to obtain a simpler structure like an undirected graph.

Of course, there is a simpler theorem that does not keep the same set of vertices,
but instead use the incidency graph of the original (hyper-)graph. Each (hyper-)edge
becomes a new vertex, thus quantification over (hyper-)edges or set of (hyper-)edges
is replaced by quantification over vertices or set of vertices and the use of a property
“was an edge”.

Theorem 1.4. Testing if a PMS2 formula is true on a labelled properties (hyper-)graph
G is equivalent to testing if a FPMS1 formula is true on a reversible matrix/labelled
2-structure S with internal domain equal to the union of vertices and (hyper-)edges
of G and external domain equal to some ordinal. G may be infinite in which case
the internal domain of S is also infinite, but it may still be the case that the external
domain is finite. IfG is a (directed) graph, then the combinations are only 0 no arc and
1 one arc (from/to a vertex of G to/from an edge of G), and we can have a reversible
matrix/labelled 2-structure S using at most 4 values in cells that are not on the diagonal
of the matrix.

Moreover for finite model checking instead of decidability, quantifications over sets
may be replaced by (many) first order quantifications. We do not know which of the
two theorems can be made efficient, if any. But at least, the first theorem captures
a good part of GraphQL (Graph Query Language); the most missing feature being
quantification over unbounded length paths. And the second theorem captures to our
knowledge all of GraphQL.

Clearly, in both theorems, if the graph G was sparse, then so is the reversible ma-
trix/labelled 2-structure S.

Section 2 contains the proof of equivalence between modular-width and questionable-
width. In section 3, we show how clique-width belongs to the scope of first difference
principle. Section 4 concludes with remarks on rank-width of (reversible) (labelled)
2-structures.

2 Modular-width and questionable-width
We want to apologize to our readers of our previous articles on first difference princi-
ple. Probably, many of them already knew modular and clan decompositions, and they
immediately have seen that questionable-width was equivalent to modular/clan-width.
We did not work on modular decomposition previously and what we remembered of
talks about it was erroneously that you would decompose a graph/2-structure when
it was either disconnected (parallel node) or its complement was disconnected (series
node), stopping when both are connected. Our further readings corrected this mis-
take and we have seen that the modular/clan decomposition goes on under primitive
nodes. At this point, it was immediate to see that questionable-width was equivalent.

9



See Ehrenfeucht et al. (1999), and Habib and Paul (2010) for a survey on algorithmic
modular/clan-decomposition.

Consider a binary signature S of unary and binary relations and functions. Given
a set S, an (S, S, k, l)-mapping-run is an (ordinal-indexed) sequence (Si)i∈l of length
l of S-structures of cardinality at most k, k being the lowest such cardinal, together
with a sequence of mappings fi from S to the domains of Si structures. Each Si is an
S-structure-item (of the mapping-run/the (Si)i∈l sequence). Each element/vertex x of
S is thus associated to a sequence (xi = fi(x))i∈l; this sequence is an “element” of
the mapping-run/the (Si)i∈l sequence; it corresponds to an element/vertex of S; each
xi = fi(x) is an element/vertex-item.

Definition 2.1 (Question). Given two elements X,Y of a mapping-run, we say that
(k, xk, yk, Sk) is the question of X,Y , if k is the smallest ordinal such that xk 6= yk.

Definition 2.2 (Questionable representation). A questionable representation of a re-
versible labelled 2-structure S is a (A, S, k, l)-mapping-run, for some k and l, where
A is the binary signature made of a single function that maps each couple of vertices
to its adjacency type, such that first difference principle applied to this mapping-run
yields the adjacencies of S. k is its width and l is its length. The questionable-width of
S is the minimum of the widths of its questionable representations.

The modular/clan-width is the maximum of the cardinals of the domains of quotient
graphs/2-structures that appear in primitive nodes of the modular/clan decomposition
of a given graph/2-structure. We fix the following convention that the modular/clan-
width of a graph/2-structure without primitive nodes in his modular/clan decomposition
is exactly two.

Under this convention, we have the following result.

Theorem 2.3. The questionable-width of a finite reversible labelled 2-structure is
equal to its clan-width.

Proposition 2.4. The questionable-width of a finite reversible labelled 2-structure S is
at most its clan-width.

Proof:

We process the nodes of the clan-decomposition from the root to its leaves, the order
of the nodes is unimportant as long as the set of treated nodes is connected at any
step. At any step, we lengthen a sequence of hopefully small 2-structures(-items)
Si, such that any vertex of the 2-structure S is associated to exactly one vertex(-
item) in each Si. Our induction hypothesis is that if a node has been treated, then
all vertices of the 2-structure that belongs to distinct branches below this node have
their adjacency types that are already set by first difference principle. Thus we
obtain a questionable representation at the final step.

If the current node to be treated is an α-complete node where α is a symmetric
adjacency type, or an α-linear node where α is an asymmetric adjacency type, we
add at the end of our current partial questionable representation a sequence of 2-
structures(-items) of size 2, their two vertices(-items) x0j and x1j having α adjacency
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type on the couple (x0j , x
1
j ). If the number of nodes under the current node is k, we

need dlg(k)e such small 2-structures(-items), and we associate to each vertex y of
S under the current node to x0j or x1j using the binary notation of the ordinal finite
number/integer corresponding to the subnode containing y. (The binary notations
must be padded on the left with 0s to have the same length.) All other vertices of S
are associated to x0j , 1 ≤ j ≤ dlg(k)e.

If the current node to be treated is a primitive node, we add at the end of our cur-
rent partial questionable representation a 2-structure(-item) isomorphic to the quo-
tient 2-structure at the primitive node. We associate to each vertex y of S under the
current node the vertex(-item) of its maximal prime clan in the quotient 2-structure.
All other vertices of S are associated to the same arbitrary vertex(-item) in the quo-
tient 2-structure.

Proposition 2.5. The questionable-width of a finite reversible labelled 2-structure is
at least its clan-width.

Proof:

Assume for a contradiction that there is a primitive node separating vertices x and
y, and that the 2-structure(-item) in the questionable representation, where the first
difference between (/the question of) x and y occurs, has size less than the cardinal
of the quotient 2-structure at the primitive node. We take such a pair of vertices x
and y with minimum question index. Clearly, without loss of generality, there must
be some vertex z that is in a subbranch below the primitive node; this subbranch is
distinct of the subbranches of x and y; and nevertheless x and z have the same image
in the question 2-structure. But then since the preimage of the image of x (and
z) restricted to the vertices below the primitive node is a clan of the substructure
induced by these vertices, it contradicts the fact that the quotient 2-structure was
primitive.

The previous results solve the problem of optimizing the width of a questionable
representation. But there remains some open-problems :

Open problem 2.6. Optimize the length of a questionable representation under opti-
mality of the width or a relaxed assumption on the width. (Without width constraint
this is obviously one.) Optimize the area (sum of the cardinals of the domains of the
labelled 2-structures(-items) in the questionable representation) or the approximated
area (length times width) of a questionable representation, with or without width con-
straint.

Open problem 2.7. Some graphs admits questionable representations with logarith-
mic length, area, and approximated area, under optimal width constraint. Find equiv-
alent characterizations of such graphs. (All labelled 2-structures admits questionable
representations with linear length, area, and approximated area, under optimal width
constraint.)
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Acccording to Ehrenfeucht et al. (1999), and Habib and Paul (2010), the origin of
modular/clan decomposition can be traced back to Gallai (1967). Putting it in the scope
of first difference principle, we go a few milleniums before but graphs and 2-structures
were not studied yet. It would be wrong to say that modular/clan decomposition can
be traced back to a few milleniums before, but we can say that a simple principle was
already known that could lead to it with some work.

3 Clique-width and first difference principle
A few years ago, we did not know much about 2-structures, and we generalized clique-
width with weighted graphs, the weights being over some field (see Flarup and Lyaudet
(2008)). When we read the book by Courcelle and Engelfriet (2012), it was a surprise
to see their generalization to labelled edge graphs using separate edge families. How-
ever the two generalizations are equivalent, may it be using ordinal weights for infinite
graphs, or rational numbers weights for finite binary structures. This is a consequence
of the theorem in introduction and of the following fact: with clique-width, you can add
all the edges between two vertices as soon as the two paths from the leaves correspond-
ing to two vertices to the root of the clique-decomposition joins the same node in the
decomposition; hence vertices coming from the same branch with distinct adjacency
types to a vertex of the other branch must have distinct clique-labels.

In order to find a sequential/first difference principle equivalent to clique-width
and clique decomposition, we need to introduce nyf-extended labelled 2-structures.
nyf is a constant special adjacency type meaning “not yet fixed”. Only reversible
labelled 2-structures appearing in decompositions may use this special adjacency type.
Its meaning is obvious, when the first difference between two vertices, that occurs in
a nyf-extended labelled 2-structures, has the nyf-adjacency type between the images
of the two vertices then their adjacency type must be given by another difference later.
Thus, nyf-extended first difference principle is that the adjacency type is given by first
difference where adjacency type is not nyf .

Definition 3.1 (Question (nyf-extended)). Given two elementsX,Y of a mapping-run,
we say that (k, xk, yk, Sk) is the question of X,Y , if k is the smallest ordinal such that
xk 6= yk and the adjacency type between xk and yk is not nyf .

There is a dual constant to nyf-extended labelled 2-structures. This is alf-extended
labelled 2-structures. alf is a constant special adjacency type meaning “already fixed”.
Only reversible labelled 2-structures to be decomposed may use this special adjacency
type. This is what is used to further decompose some reversible labelled 2-structure in
tree-questionable-width. (We introduced tree-questionable-width in Lyaudet (2019).)
It is somewhat linked to bi-modular decomposition in this setting, see Fouquet et al.
(2004). We shall use it in a future article on classes of bounded balanced tree-questionable-
width, but not in this article.

A nyf-connected-component, resp. nyf-clique, in a nyf-extended labelled 2-structures
is simply a connected component, resp. a clique, in the underlying undirected simple
graph where nyf-adjacency corresponds to edges and everything else correspond to a
non-edge.
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Definition 3.2 (Clique-questionable representation). A clique-questionable representa-
tion of a reversible labelled 2-structure S is a nyf −(A, S, k, l)-mapping-run, for some
k and l, where A is the binary signature made of a single function that maps each
couple of vertices to its adjacency type, such that:

(i) nyf-extended first difference principle applied to this mapping-run yields the
adjacencies of S;

(ii) the nyf-extended reversible labelled 2-structures(-items) must have the prop-
erty that there are exactly two nyf-connected-components, and that these nyf-
connected-components are nyf-cliques;

(iii) two vertices of S that have a nyf-difference must have only nyf-differences until
they have a question/non-nyf-difference; they cannot be mapped to the same
vertex(-item) again until some question/non-nyf-difference occurs.

k is its width and l is its length. The clique-questionable-width of S is the minimum of
the widths of its clique-questionable representations.

Theorem 3.3. The clique-questionable-width of a countable reversible labelled 2-
structure is between its clique-width and two times its clique-width, under the con-
straint that clique-questionable representations must have length at most ω.

Proposition 3.4. The clique-questionable-width of a countable reversible labelled 2-
structure S is at most two times its clique-width, under the constraint that clique-
questionable representations must have length at most ω.

Proof:

Without loss of generality, we may assume that all edges are added in the clique-
decomposition as soon is possible, using the compact clique-algebra (Courcelle and
Engelfriet (2012)). Moreover, at the cost of doubled clique-width, we assume that
when two branches joins in the clique decomposition, their port labels are disjoint.
We process the (compact-)nodes of the clique-decomposition from the root to its
leaves, the order of the nodes is unimportant as long as the set of treated nodes is
connected at any step. At each step, we lengthen a sequence of hopefully small nyf-
extended labelled 2-structures(-items) Si, such that any vertex of the 2-structure S is
associated to exactly one vertex(-item) in each Si, respecting condition (iii) above.
Moreover, each Si is the union of two nyf-cliques. Our induction hypothesis is
that if a node has been treated, then all vertices of the 2-structure that belongs to
distinct branches below this node have their adjacency types that are already set by
nyf-extended first difference principle (condition (i’)), and conditions (ii) and (iii)
are respected. Thus we obtain a clique-questionable representation at the final step,
since all vertices have been pairwise separated in distinct branches at some point.

Since the compact clique-algebra yields a single type of nodes (no need to han-
dle the leaves corresponding to isolated vertices), the induction is straight-forward.
For each compact node, we add a nyf-extended labelled 2-structure(-item) Si made
of two nyf-cliques, the first nyf-clique having as much vertices as port labels in
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the left branch below the current node, the second nyf-clique having as much ver-
tices as port labels in all the clique-decomposition (condition (ii) is satisfied). The
mapping of vertices from S to Si associates all vertices below the current node
to the vertex(-item) corresponding to its port label (under the current node) in the
nyf-clique corresponding to its branch; other vertices are associated to the vertex(-
item) corresponding to its port label (under the last corresponding node treated) in
the nyf-clique of Si having all port labels. The adjacency types in Si between the
two nyf-cliques are the ones corresponding to the node of the clique-decomposition
with the additional no-edge default adjacency type explicitly set, when the compact-
node adds nothing between two port labels sets of vertices. Clearly condition (i’) is
satisfied. To see that condition (iii) is satisfied, we observe that:

• for all vertices below the current node, condition (iii) is true between two ver-
tices in the same branch below the current node, because it was true previously,
and no renaming operation may give distinct port labels if they had the same
port label below the node; two vertices in distinct branches have now distinct
port labels and a fixed adjacency type;

• for all other vertices, condition (iii) was satisfied previously, and nothing changed
with the previous step with respect to being mapped to the same vertex or not;

• for a vertex below the current node and a vertex not below, condition (iii)
was satisfied previously, and they have already a question/non-nyf difference,
hence it will never be unsatisfied in the future.

Q.E.D.

Proposition 3.5. The clique-questionable-width of a countable reversible labelled 2-
structure is at least its clique-width, under the constraint that clique-questionable rep-
resentations must have length at most ω.

Proof:

Given a clique-questionable representation, we construct a (compact)-clique decom-
position of same width in a top-down manner. First, using a number of port labels
equal to the width of the clique-questionable representation, we assign a distinct
port label to each vertex(-item) of Si, for all i; this choice is completely arbitrary
as long as two distinct vertices of the same Si have distinct port labels (and we do
not use more port labels than necessary for that). At each step, we maintain a set
of subsets of S, {Xj}, that have already been splitted, all adjacency types between
distinct Xj , Xj′ being already fixed both by the beginning of clique-questionable
representation and the in-construction (compact-)clique-decomposition. Each Xj

corresponds to a leaf of the in-construction (compact-)clique-decomposition. Be-
fore first step, {Xj} = {S}. For each (step) Si item in the clique-questionable
representation, consider the substructure (substep) Si,j of Si restricted to the image
of Xj . If Si,j is included in one of the two nyf-cliques, then this substep is finished.
Otherwise Si,j is made of two parts Si,j,0 and Si,j,1 corresponding to the two nyf-
cliques. We replace the leaf corresponding to Xj with a node that renames the port
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labels of the vertices in Si,j into the port labels ofXj vertices at the substepXj was
created (we can do so with respect to distinct vertices in the same Si,j,b thanks to
condition (iii)); under this node we add adding adjacency type operations/nodes to
reflect Si,j (this is easy since all port labels are distinct); last we had a disjoint union
node separating two leaves corresponding toXj,0, Xj,1 the domains of Si,j,0, Si,j,1.
(The nodes created at a substep can trivially be grouped into a compact-node.) It
is trivial to see that the clique-decomposition obtained constructs the same labelled
2-structure as the clique-questionable representation, and does not use more port
labels than its width.

Proposition 3.4 can not be improved unless Proposition 2.105 (4) in Courcelle and
Engelfriet (2012) can be improved. (It cannot be improved for trivial graphs such as
the discrete graphs and the complete graphs. We do not know a non-trivial family of
counter-examples.) First difference principle, as we use it, is totally “adjacency type
impartial”, it does not make any difference between some default adjacency type such
as no-edge and other adjacency types. It has the advantage that all results apply under
any injective mapping from a set of adjacency types to another. Hence, the two pre-
vious definitions also define the questionable-width and the clique-questionable-width
of a 2-structure instead of a labelled 2-structure. It would be possible to shrink (clique-
)questionable representations in some cases, with the convention that, when no two dif-
ferences occurs, a default adjacency type is given. Non-edges gives an example of such
a symmetric default adjacency type. Lexicographic order gives an example of such an
asymmetric default adjacency type, using the length to determine the orientation. We
do not study further this topic yet because we think that as the saying goes “Explicit
is better than implicit”, and “Premature optimization is the root of all evil” (Knuth).
Further research may prove us wrong. Courcelle generalized clique-decompositions
to countable graphs/labelled 2-structures. nyf-extended first difference principle and
clique-questionable representation give us an alternative for reversible (labelled) 2-
structures of any cardinality. Equivalently, we can substitute to the nyf-clique require-
ment the fact that nyf-adjacency defines an equivalence relation on vertices(-items)
with exactly two equivalence classes in each 2-structure-item.

In light of the introductory theorem and the “good behaviour” of clique-width and
monadic second order logic with vertex quantification, it was an easy guess that first
difference principle may have a link with clique-width.

Déjà vu:

Open problem 3.6. Optimize the length of a clique-questionable representation under
optimality of the width or a relaxed assumption on the width. Optimize the area (sum
of the cardinals of the domains of the labelled 2-structures in the clique-questionable
representation) or the approximated area (length times width) of a clique-questionable
representation, with or without width constraint.

Open problem 3.7. Some graphs admits clique-questionable representations with log-
arithmic length, area, and approximated area, under optimal width constraint. Find
equivalent characterizations of such graphs.
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4 Rank-width of (labelled) 2-structures
In 2008, we were working to extend the results of Barvinok (1996) and Flarup and
Lyaudet (2008). Barvinok showed that if the underlying matrix has bounded rank, both
the permanent and the hamiltonian polynomials can be evaluated in polynomial time;
we showed a similar result for bounded weighted clique-width matrices. We hoped to
show that the permanent of a bounded rank-width matrix can be computed in polyno-
mial time. Our opinion at that time was that rank-width was a kind of algebraic trick
to “compress” clique-width. We did not know whether rank-width and clique-width
are still equivalent over any arbitrary field. We talked about this subject with Frédéric
Mazoit, who talked about it to Michaël Rao, who gave us the following example in
2010:

“Consider a finite set of vertices, each associated to a distinct strictly positive inte-
ger, giving the matrix over Q where the edge weight between vertices i and j is i× j.
This matrix has rank 1, hence has rank-width 1. But it should have clique-width around
n/2, where n is the number of vertices.”

We can modify this example to guaranty that all edges are distinct: Consider a finite
set of vertices, each associated to a distinct prime number pi (We have a symmetric 2-
structure). Or even that all arcs are distinct: cell i, j has weight p2i × pj (We have an
asymmetric reversible 2-structure).

After that, our opinion on rank-width was that we should not be talking about equiv-
alence between rank-width and other widths with too much confidence because rank-
width lives in his own realm. It is able to capture “too predictable chaos” when all
adjacencies are distinct.

At the light of first difference principle and “adjacency type impartiality”, we think
we should not focus on the algebraic meaning of rank-width. Instead we should feel
free to compute the rank-width of any (labelled) 2-structure with an arbitrary injec-
tive mapping from its adjacency types to values in some arbitrary field. It yields two
new widths of (labelled) 2-structures: maximum rank-width under injective mapping,
and minimum rank-width under injective mapping. We have the corresponding open-
problems:

Open problem 4.1. For (finite) (labelled) 2-structures, what are the fields on which
the maximum rank(-width) under injective mapping is obtained. Is it true for finite
(labelled) 2-structures that an injective mapping maximizing rank(-width) always exists
over Q? Find algorithms in the finite case.

Open problem 4.2. For (finite) (labelled) 2-structures, what are the fields on which
the minimum rank(-width) under injective mapping is obtained. Is it true for finite
(labelled) 2-structures that an injective mapping minimizing rank(-width) always exists
over the smallest prime field of cardinality at least the number of adjacency types (plus
1 when there are only 2 adjacency types ?) of the 2-structure? Find algorithms in the
finite case.

Open problem 4.3. Is it true that clique-width of labelled 2-structures is closely equiv-
alent to their maximum rank-width under injective mapping?
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Open problem 4.4. Rank-width is able to capture “too predictable chaos”, but mini-
mum rank-width under injective mapping does capture “too predictable chaos”. What
kind of logic is suited for that? For example, it is clear that first order model checking
is trivial on a labelled 2-structure where all adjacency types are distinct, at least if
the formula has no disjunction between possible adjacency types for some couple of
quantified vertices in it.

We gave a try at these open problems for a few weeks, with meager success.

Lemma 4.5. Let e and e′ be the values in some field F corresponding to an edge and a
non-edge. We can assume without loss of generality that one of these two values is 1F
without modifying the rank(-width).

The following matrix has rank 2 over F2 but rank 3 over Q:0 1 1
1 0 1
1 1 0


It is the smallest such matrix (unique matrix of dimension 3) and the adjacency matrix
of a triangle. It yields the following matrix that has rank 3 in all fields except F2:−1 1 1

1 −1 1
1 1 −1


But the matrix ( 0 1

1 0 ) has rank 2 and the matrix (−1 1
1 −1 ) has rank 1, over any field

except F2.
The non-trivial linear combinations of 2 rows of -1, 1 matrices cannot be a -1, 1

row.
The following matrix has rank 3 over F3 but rank 4 over F2 (easy to generalize) :

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0


The following matrix has rank 3 over F2 and Q:

0 1 1 0
1 0 1 1
1 1 0 1
1 1 1 1


but the 3 linearly independent rows are not the same. It proves that a simple proof like
“any linear combination of 0,1 rows over Q that yields a 0,1 row has an equivalent
linear combination over F2” does not exist. Thus it is not trivial, if true, that the rank
over Q of 0, 1 matrices is the maximum rank under injective mapping of such matrices.

Trying to find a 0, 1 matrix of higher rank over F2 than over Q, we did an algorithm
that checked that no such matrix exists for dimension at most 6. Dimension 7 was out
of reach for our laptop. The source code in PHP is in the appendix.
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Appendix
We give here the PHP source code of our experiments on rank of 0,1 matrices. It serves
two purposes :

• We may have a bug in our code that would invalidate what we said previously;
any reader can check and reproduce our experiment and correct us in case we
were wrong.

• We found no relevant article on generating all 0,1 matrices of some dimension,
up to transposition, row permutation, and/or column permutation; and we think
that the algorithm we designed for this task using lexicographic order of rows is
quite good. However, our algorithm for rank computation is very crude.

<?php

function printMatrix($matrix){
static $iNumberOfMatricesPrinted = 0;
foreach($matrix as $row){

echo ’( ’.join(’ ’, $row).’ )’."\n";
}
//echo "\n";
++$iNumberOfMatricesPrinted;
echo $iNumberOfMatricesPrinted." matrices printed\n";
//echo "\n";

}
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function generateMatrices($iDimension, $funcCallback){
$matrixGerm = array();
for($i = 0; $i < $iDimension; ++$i){

$row = array();
for($j = 0; $j < $iDimension; ++$j){

$row []= 0;
}
$matrixGerm []= $row;

}
//printMatrix($matrixGerm);
for($i = 1; $i <= $iDimension; ++$i){

generateMatricesWith($iDimension, $funcCallback, $i, $matrixGerm);
}

}

function generateMatricesWith(
$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm

){

$tabINumberOfOnesOnColumn = array();
for($i = 0; $i < $iAtMostOnesOnEachColumnRow; ++$i){//setting first row

$matrixGerm[0][$i] = 1;
$tabINumberOfOnesOnColumn[$i] = 1;

}
for(;$i < $iDimension; ++$i){

$tabINumberOfOnesOnColumn[$i] = 0;
}
for($i = 1; $i <= $iAtMostOnesOnEachColumnRow; ++$i){

generateMatricesWith2(
$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$i,
$tabINumberOfOnesOnColumn

);
}

}

function generateMatricesWith2(
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$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$iNumberOfOneOnFirstColumn,
$tabINumberOfOnesOnColumn

){
for($i = 1; $i < $iNumberOfOneOnFirstColumn; ++$i){//setting first column

$matrixGerm [$i][0] = 1;
}
$tabINumberOfOnesOnColumn[0] = $iNumberOfOneOnFirstColumn;
//printMatrix($matrixGerm); return;
$iCurrentNumberOfOnesOnThisRow = 1;
$isCurrentRowEqualToPrevious = true;
if($iNumberOfOneOnFirstColumn === 1){

$iCurrentNumberOfOnesOnThisRow = 0;
$isCurrentRowEqualToPrevious = false;

}
generateMatricesWith3(

$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$tabINumberOfOnesOnColumn,
1, 1,
$isCurrentRowEqualToPrevious,
$iCurrentNumberOfOnesOnThisRow

);
}

function generateMatricesWith3(
$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$tabINumberOfOnesOnColumn,
$iCR,
$iCC,
$isCurrentRowEqualToPrevious,
$iCurrentNumberOfOnesOnThisRow

){
//We generate the new matrices with 0 or 1
//Choice 0
$isCurrentRowEqualToPreviousNew =

($isCurrentRowEqualToPrevious && $matrixGerm[$iCR-1][$iCC] === 0);
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generateMatricesWith3Bis(
$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$tabINumberOfOnesOnColumn,
$iCR,
$iCC,
$isCurrentRowEqualToPreviousNew,
$iCurrentNumberOfOnesOnThisRow

);

//Choice 1
if($iCurrentNumberOfOnesOnThisRow >= $iAtMostOnesOnEachColumnRow

|| $tabINumberOfOnesOnColumn[$iCC] >= $iAtMostOnesOnEachColumnRow
){

return;
}
$isCurrentRowEqualToPreviousNew =

($isCurrentRowEqualToPrevious && $matrixGerm[$iCR-1][$iCC] === 1);
if($isCurrentRowEqualToPrevious && !$isCurrentRowEqualToPreviousNew){

//les lignes ne sont pas dans l’ordre lexicographique
return;

}
$matrixGerm[$iCR][$iCC] = 1;
$iCurrentNumberOfOnesOnThisRow += 1;
$tabINumberOfOnesOnColumn[$iCC] += 1;
generateMatricesWith3Bis(

$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$tabINumberOfOnesOnColumn,
$iCR,
$iCC,
$isCurrentRowEqualToPreviousNew,
$iCurrentNumberOfOnesOnThisRow

);
}

function generateMatricesWith3Bis(
$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$tabINumberOfOnesOnColumn,

22



$iCR,
$iCC,
$isCurrentRowEqualToPrevious,
$iCurrentNumberOfOnesOnThisRow

){
if($iCC === $iDimension -1){

if($iCR === $iDimension -1){
$funcCallback($matrixGerm, $iDimension);
return;

}
$isCurrentRowEqualToPrevious =

($matrixGerm[$iCR][0] === $matrixGerm[$iCR + 1][0]);
$iCurrentNumberOfOnesOnThisRow = $matrixGerm[$iCR + 1][0];
generateMatricesWith3(

$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$tabINumberOfOnesOnColumn,
$iCR + 1,
1,
$isCurrentRowEqualToPrevious,
$iCurrentNumberOfOnesOnThisRow

);
return;

}
generateMatricesWith3(

$iDimension,
$funcCallback,
$iAtMostOnesOnEachColumnRow,
$matrixGerm,
$tabINumberOfOnesOnColumn,
$iCR,
$iCC + 1,
$isCurrentRowEqualToPrevious,
$iCurrentNumberOfOnesOnThisRow

);
}

function computeRankOver(
$matrix,
$iDimension,
$iModulo = null,//works for modulo 2 only at the moment,
$bPrint = false

){
$tabZeroRows = array();
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$tabExcludedRows = array();
for($i = 0; $i < $iDimension; ++$i){

for($j = 0; $j < $iDimension; ++$j){
if($matrix[$i][$j] != 0){

$tabZeroRows[$i] = false;
$tabExcludedRows[$i] = false;
continue 2;

}
$tabZeroRows[$i] = true;
$tabExcludedRows[$i] = true;

}
}
//for each column
for($j = 0; $j < $iDimension; ++$j){

//find first non-excluded row with non-zero cell
$rowChosed = null;
for($i = 0; $i < $iDimension; ++$i){

if($tabExcludedRows[$i]){
continue;

}
if(round($matrix[$i][$j], 7) != 0){

$rowChosed = $i;
$tabExcludedRows[$i] = true;
break;

}
}
if($rowChosed === null){

continue;
}
for($i = 0; $i < $iDimension; ++$i){

if($tabExcludedRows[$i]){
continue;

}
if(round($matrix[$i][$j], 7) == 0){

continue;
}
$coef = -($matrix[$i][$j] / $matrix[$rowChosed][$j]);
$isZeroRow = true;
for($k = $j; $k < $iDimension; ++$k){

$matrix[$i][$k] = $matrix[$i][$k] + $coef * $matrix[$rowChosed][$k];
if(round($matrix[$i][$k], 7) != 0){

$isZeroRow = false;
}
if($iModulo !== null){

while($matrix[$i][$k] < 0){
$matrix[$i][$k] += $iModulo;
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}
$matrix[$i][$k] = (int)round($matrix[$i][$k]);
$matrix[$i][$k] = $matrix[$i][$k] % $iModulo;

}
}
if($isZeroRow){

$tabZeroRows[$i] = true;
$tabExcludedRows[$i] = true;

}
}

}
$iRank = $iDimension;
for($i = 0; $i < $iDimension; ++$i){

if($tabZeroRows[$i]){
--$iRank;

}
}
if($bPrint){

printMatrix($matrix);
}
return $iRank;

}

function hasSmallerRankOverQThanZ2(
$matrix,
$iDimension

){
$iRankOverZ2 = computeRankOver(

$matrix,
$iDimension,
2

);
$iRankOverQ = computeRankOver(

$matrix,
$iDimension

);

if($iRankOverZ2 > $iRankOverQ){
printMatrix($matrix);
echo(

"Cette matrice est de rang $iRankOverZ2 sur Z2"
." mais de rang $iRankOverQ sur Q\n\n"

);
}

}
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//generateMatrices(3, ’printMatrix’);
/*
generateMatrices(3, ’hasSmallerRankOverQThanZ2’);
generateMatrices(4, ’hasSmallerRankOverQThanZ2’);
generateMatrices(5, ’hasSmallerRankOverQThanZ2’);
//*/
//generateMatrices(6, ’hasSmallerRankOverQThanZ2’); //10 minutes d’attente
//generateMatrices(7, ’hasSmallerRankOverQThanZ2’);

function compareRanksOverQAndZ2(
$matrix,
$iDimension

){
$iRankOverZ2 = computeRankOver(

$matrix,
$iDimension,
2,
true

);
$iRankOverQ = computeRankOver(

$matrix,
$iDimension,
null,
true

);

printMatrix($matrix);
echo(

"Cette matrice est de rang $iRankOverZ2 sur Z2"
." et de rang $iRankOverQ sur Q\n\n"

);
}

$iDimension = 9;
$matrix = array(

array(1, 0, 0, 0, 0, 1, 1, 1, 1),
array(1, 1, 0, 0, 0, 0, 1, 1, 1),
array(1, 1, 1, 0, 0, 0, 0, 1, 1),
array(1, 1, 1, 1, 0, 0, 0, 0, 1),
array(0, 1, 1, 1, 1, 0, 0, 0, 0),
array(0, 0, 1, 1, 1, 1, 0, 0, 0),
array(0, 0, 0, 1, 1, 1, 1, 0, 0),
array(0, 0, 0, 0, 1, 1, 1, 1, 0),
array(1, 1, 1, 1, 1, 1, 1, 1, 1),
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);

compareRanksOverQAndZ2(
$matrix,
$iDimension

);

$iDimension = 9;
$matrix = array(

array(1, 0, 0, 0, 0, 0, 0, 0, 0),
array(1, 1, 0, 0, 0, 0, 0, 0, 0),
array(1, 1, 1, 0, 0, 0, 0, 0, 0),
array(1, 1, 1, 1, 0, 0, 0, 0, 0),
array(0, 1, 1, 1, 1, 0, 0, 0, 0),
array(0, 0, 1, 1, 1, 1, 0, 0, 0),
array(0, 0, 0, 1, 1, 1, 1, 0, 0),
array(0, 0, 0, 0, 1, 1, 1, 1, 0),
array(1, 1, 1, 1, 1, 1, 1, 1, 1),

);

function generateInterestingMatrices(
$iDimension,
$matrix,
$funcCallback

){
$iMinRow = 0;
$tabModificationsToDo = array();
for($j = 5; $j < $iDimension; ++$j){

$iNumberOfOnesToSet = $j - 4;
$iMaxRow = $j - 1;
$tabModificationsToDo []= array(

’column’ => $j,
’minr’ => $iMinRow,
’maxr’ => $iMaxRow,
’nb1’ => $iNumberOfOnesToSet,

);
}
modifyMatrix(

$iDimension,
$matrix,
$funcCallback,
$tabModificationsToDo

);
}
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function modifyMatrix(
$iDimension,
$matrix,
$funcCallback,
$tabModificationsToDo

){
if(empty($tabModificationsToDo)){

$funcCallback($matrix, $iDimension);
return;

}
$modification = array_pop($tabModificationsToDo);
performModification(

$iDimension,
$matrix,
$funcCallback,
$tabModificationsToDo,
$modification

);
}

function performModification(
$iDimension,
$matrix,
$funcCallback,
$tabModificationsToDo,
$modification

){
if($modification[’nb1’] === 0){

modifyMatrix(
$iDimension,
$matrix,
$funcCallback,
$tabModificationsToDo

);
return;

}
$modification[’nb1’] -= 1;
for($i = $modification[’minr’]; $i <= $modification[’maxr’]; ++$i){

$matrix[$i][$modification[’column’]] = 1;
$modification[’minr’] += 1;
performModification(

$iDimension,
$matrix,
$funcCallback,
$tabModificationsToDo,
$modification

28



);
$matrix[$i][$modification[’column’]] = 0;

}
}

generateInterestingMatrices(
$iDimension,
$matrix,
’hasSmallerRankOverQThanZ2’

);

?>
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