
On the expressive power of permanents and perfect
matchings of matrices of bounded pathwidth/cliquewidth

Uffe Flarup1, Laurent Lyaudet2,3

1 Department of Mathematics and Computer Science
Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark

e–mail: flarup@imada.sdu.dk; fax: +45 65 93 26 91
2 Laboratoire d’Informatique Fondamentale d’Orléans

Université d’Orléans, Rue Léonard de Vinci, BP 6759 45067 Orléans cedex 2, France
e–mail: laurent.lyaudet@univ-orleans.fr; fax: +33 2 38 41 71 37

3 Laboratoire de l’Informatique du Parallélisme†

École Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07, France
e–mail: laurent.lyaudet@ens-lyon.fr; fax: +33 4 72 72 80 80

Abstract. Some 25 years ago Valiant introduced an algebraic model of computation
in order to study the complexity of evaluating families of polynomials. The theory was
introduced along with the complexity classes VP and VNP which are analogues of the
classical classes P and NP. Families of polynomials that are difficult to evaluate (that is,
VNP-complete) include the permanent and hamiltonian polynomials.
In a previous paper the authors together with P. Koiran studied the expressive power
of permanent and hamiltonian polynomials of matrices of bounded treewidth, as well as
the expressive power of perfect matchings of planar graphs. It was established that the
permanent and hamiltonian polynomials of matrices of bounded treewidth are equivalent
to arithmetic formulas. Also, the sum of weights of perfect matchings of planar graphs
was shown to be equivalent to (weakly) skew circuits.
In this paper we continue the research in the direction described above, and study the ex-
pressive power of permanents, hamiltonians and perfect matchings of matrices that have
bounded pathwidth or bounded cliquewidth. In particular, we prove that permanents,
hamiltonians and perfect matchings of matrices that have bounded pathwidth express
exactly arithmetic formulas. This is an improvement of our previous result for matri-
ces of bounded treewidth. Also, for matrices of bounded weighted cliquewidth we show
membership in VP for these polynomials.

1 Introduction

In this paper we continue the work that was started in [10]. Our focus is on easy special cases
of otherwise difficult to evaluate polynomials, and their relation to various classes of arithmetic
circuits. It is conjectured that the permanent and hamiltonian polynomials are hard to evaluate.
Indeed, in Valiant’s model [21, 22] these families of polynomials are both VNP-complete. In the
boolean framework they are complete for the complexity class]P [23]. However, for matrices of
bounded treewidth the permanent and hamiltonian polynomials can efficiently be evaluated -
the number of arithmetic operations being polynomial in the size of the matrix [5].

An earlier result along these lines is related to computing weights of perfect matchings in a
graph: The sum of weights of all perfect matchings in a weighted (undirected) graph is another
† UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.

hard to evaluate polynomial, but for planar graphs it can be evaluated efficiently due to Fisher,
Kasteleyn, and Temperley’s theorem [9, 13, 19].

By means of reductions these evaluation methods can all be seen as general-purpose eval-
uation algorithms for certain classes of polynomials. As an example, if an arithmetic formula
represents a polynomial P then one can construct a matrix A of bounded treewidth such that:

(i) The entries of A are variables of P , or constants from the underlying field.
(ii) The permanent of A is equal to P .

It turns out that the converse holds as well, so with respect to the computational com-
plexity computing the permanent of a bounded treewidth matrix is equivalent to evaluating an
arithmetic formula. In [10] the following results (with abuse of notation) were established:

(i) permanent/hamiltonian(bounded treewidth matrix) ≡ arithmetic formulas.
(ii) perfect matchings(planar matrix) ≡ arithmetic skew circuits.

One can also by similar techniques show that:

(iii) perfect matchings(bounded treewidth matrix) ≡ arithmetic formulas.

Other notions of graph “width” have been defined in the litterature besides treewidth, e.g.
pathwidth, cliquewidth, and rankwidth. Here we would like to study the evaluation meth-
ods mentioned above, but considering matrices A that have bounded pathwidth or bounded
cliquewidth instead of bounded treewidth. In this paper we establish the following results:

(i) per/ham/perf. match.(bounded pathwidth matrix) ≡ arithmetic skew circuits of bounded
width ≡ arithmetic weakly skew circuits of bounded width ≡ arithmetic formulas.

(ii) arithmetic formulas ⊆ per/ham/perfect matchings(bounded cliquewidth matrix) ⊆ VP.

Overview of the paper. The second section of the paper introduces definitions used through-
out the paper and provides some small technical results related to graph widths. In partic-
ular we show equivalence between the weighted definitions of cliquewidth, NLC-width, and
m-cliquewidth with respect to boundedness. Sections 3 and 4 are devoted to the expressiveness
of the permanent, hamiltonian, and perfect matchings of the graphs of bounded pathwidth and
bounded weighted cliquewidth respectively. We prove in Section 3 that permanent, hamiltonian,
and perfect matchings limited to bounded pathwidth graphs express arithmetic formulas. In
Section 4, we show that for all three polynomials the complexity is between arithmetic formulas
and VP for graphs of bounded weighted cliquewidth.

2 Definitions and preliminary results

2.1 Arithmetic circuits

Definition 1. An arithmetic circuit is a finite, acyclic, directed graph. Vertices have indegree 0
or 2, where those with indegree 0 are referred to as inputs. A single vertex must have outdegree
0, and is referred to as output. Each vertex of indegree 2 must be labeled by either + or ×, thus
representing computation. Vertices are commonly referred to as gates and edges as arrows.

2

By interpreting the input gates either as constants or variables it is easy to prove by induction
that each arithmetic circuit naturally represents a polynomial.

In this paper various subclasses of arithmetic circuits will be considered: For weakly skew
circuits we have the restriction that for every multiplication gate, at least one of the incoming
arrows is from a subcircuit whose only connection to the rest of the circuit is through this
incoming arrow. For skew circuits we have the restriction that for every multiplication gate, at
least one of the incoming arrows is from an input gate. For formulas all gates (except output)
have outdegree 1. Thus, reuse of partial results is not allowed.

For a detailed description of various subclasses of arithmetic circuits, along with examples,
we refer to [18].

Definition 2. The size of a circuit is the total number of gates in the circuit. The depth of a
circuit is the length of the longest path from an input gate to the output gate.

2.2 Pathwidth and treewidth

Since the definition of pathwidth is closely related to the definition of treewidth (bounded
pathwidth is a special case of bounded treewidth) we also include the definition of treewidth in
this paper. Treewidth for undirected graphs is commonly defined as follows:

Definition 3. Let G = 〈V,E〉 be a graph. A k-tree-decomposition of G is:

(i) A tree T = 〈VT , ET 〉.
(ii) For each t ∈ VT a subset Xt ⊆ V of size at most k + 1.

(iii) For each edge (u, v) ∈ E there is a t ∈ VT such that {u, v} ⊆ Xt.
(iv) For each vertex v ∈ V the set {t ∈ VT |v ∈ Xt} forms a (connected) subtree of T .

The treewidth of G is then the smallest k such that there exists a k-tree-decomposition for G.
A k-path-decomposition of G is then a k-tree-decomposition where the “tree” T is a path (each
vertex t ∈ VT has at most one child in T).

Example 1. Here we show that cycles have pathwidth at most 2 by constructing a path-decom-
position of G where each Xt has size at most 3. Let v1, v2, . . . , vn be the vertices of a graph
G which is a cycle. The edges of G are (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1). The vertex v1
is contained in every Xt of the path-decomposition. Vertices v2 and v3 are contained in X1,
vertices v3 and v4 are contained in X2, and so on. Finally, vertices vn−1 and vn are contained
in Xn−2. This gives a path-decomposition of G of width 2.

The pathwidth (treewidth) of a directed, weighted graph is naturally defined as the pathwidth
(treewidth) of the underlying, undirected, unweighted graph. The pathwidth (treewidth) of an
(n × n) matrix M = (mi,j) is defined as the pathwidth (treewidth) of the directed graph
GM = 〈VM , EM , w〉 where VM = {1, . . . , n}, (i, j) ∈ EM iff mi,j 6= 0, and w(i, j) = mi,j . Notice
that GM can have loops. Loops affect neither the pathwidth nor the treewidth of GM but are
important for the characterization of the permanent polynomial.

2.3 Cliquewidth, NLCwidth, and m-cliquewidth

Although there exist many algorithmic results for graphs of bounded treewidth, there are
still classes of “trivial” graphs that have unbounded treewidth. Cliques are an example of

3

such graphs. Cliquewidth is a different notion of “width” for graphs, and it is more general
than treewidth since graphs of bounded treewidth have bounded cliquewidth, but cliques have
bounded cliquewidth and unbounded treewidth.

We recall the definitions of cliquewidth, NLCwidth, and m-cliquewidth for unweighted, undi-
rected graphs. Then we introduce the new notions of W -cliquewidth, W -NLCwidth and W -m-
cliquewidth which are variants of the preceding ones for weighted, directed graphs. These graph
widths are all defined using terms over an universal algebra. When we refer to parse-trees it
means the parse-trees of these terms.

Definition 4 ([4, 6]). A graph G has cliquewidth (denoted cwd(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named clique operations):

(i) vera, a ∈ S (basic construct: create a single vertex with label a).
(ii) ρa→b(H), a, b ∈ S (rename all vertices with label a to have label b instead).

(iii) ηa,b(H), a, b ∈ S, a 6= b (add missing edges between all pairs of vertices where one of them
has label a and the other has label b).

(iv) H ⊕ H ′ (disjoint union of previously constructed graphs).

Example 2. Using the clique algebra, the clique with four vertices K4 is constructed by the
following term using only two source labels; S = {a, b}:

ηa,b((ρa→b(ηa,b((ρa→b(ηa,b(vera ⊕ verb))) ⊕ vera))) ⊕ vera).

Definition 5 ([24]). A graph G has NLCwidth (denoted wdNLC(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named NLC operations):

(i) vera, a ∈ S (basic construct: create a single vertex with label a).
(ii) ◦R(H) for any mapping R from S to S (for every source label a ∈ S rename all vertices

with label a to have label R(a) instead).
(iii) H ×S H ′ for any S ⊆ S2 (disjoint union of graphs to which are added edges between all

couples of vertices x ∈ H (with label lx), y ∈ H ′ (with label ly) having (lx, ly) ∈ S).

One important distinction between cliquewidth and NLCwidth on one side, and m-cliquewidth
(to be defined below) on the other side is that in the first two each vertex is assigned exactly
one label, and in the last one each vertex is assigned a set of labels (possibly empty).

Definition 6 ([7]). A graph G has m-cliquewidth (denoted mcwd(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named m-clique operations):

(i) verA (basic construct: create a single vertex with a set of labels A, A ⊆ S).
(ii) H ⊗S,h,h′ H ′ for any S ⊆ S2 and any h, h′ : P(S) → P(S) (disjoint union of graphs to

which is added edges between all couples of vertices x ∈ H, y ∈ H ′ whose sets of labels Lx, Ly
contain a couple of labels lx, ly such that (lx, ly) ∈ S. Then the labels of vertices from H are
changed via h and the labels of vertices from H ′ are changed via h′).

4

Note that NLC (resp. m-clique) operation H ×S H ′ (resp. H ⊗S,h,h′ H ′) is not commutative
(it may help to keep in mind this fact before reading the definitions of their weighted equivalents).
It is an useful “feature” of these algebras that virtually doubles the number of labels when adding
edges.

It is stated in [7] (a proof sketch of this result is given in [7], one of the inequalities is proven
in [11]) that

mcwd(G) ≤ wdNLC(G) ≤ cwd(G) ≤ 2mcwd(G)+1 − 1.

Hence, cliquewidth, NLC-width, and m-cliquewidth are equivalent with respect to boundedness.

We have seen that the definition of pathwidth and treewidth for weighted graphs straight
forward was defined as the width of the underlying, unweighted graph. This is a major differ-
ence compared to cliquewidth. We can see that if we consider non-edges as edges of weight 0,
then every weighted graph has a clique (which has bounded cliquewidth 2) as its underlying,
unweighted graph.

Our main motivation for studying bounded cliquewidth matrices is to obtain efficient algo-
rithms for evaluating polynomials like the permanent and hamiltonian for such matrices. For
this reason, it is not reasonable to define the cliquewidth of a weighted graph as the cliquewidth
of the underlying, unweighted graph, because then computing the permanent of a matrix of
cliquewidth 2 is as difficult as the general case. Hence, we put restrictions on how weights are
assigned to edges: Edges added in the same operation between vertices having the same pair of
labels, will all have the same weight.

We now introduce the definitions of W -cliquewidth, W -NLCwidth, and W -m-cliquewidth.
We will consider simple, weighted, directed graphs where the weights are in some set W . In the
three following constructions, an arc from a vertex x to a vertex y is only added by relevant
operations if there is not already an arc from x to y. The operations that differ from the
unweighted case are indicated by bold font.

Definition 7. A graph G has W -cliquewidth (denoted Wcwd(G)) at most k iff there exists a
set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named W -clique operations):

(i) vera, a ∈ S (basic construct: create a single vertex with label a).
(ii) ρa→b(H), a, b ∈ S (rename all vertices with label a to have label b instead).

(iii) αwa,b(H), a, b ∈ S, a 6= b, w ∈ W (add missing arcs of weight w from all vertices with label
a to all vertices with label b).

(iv) H ⊕ H ′ (disjoint union of graphs).

Definition 8. A graph G has W -NLCwidth (denoted WwdNLC(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named W -NLC operations):

(i) vera, a ∈ S (basic construct: create a single vertex with label a).
(ii) ◦R(H) for any mapping R from S to S (for every source label a ∈ S rename all vertices

with label a to have label R(a) instead).
(iii) H ×S H ′ for any partial function S : S2×{−1, 1} →W (disjoint union of graphs to which

are added arcs of weight w for each couple of vertices x ∈ H, y ∈ H ′ whose labels lx, ly are
such that S(lx, ly, s) = w; the arc is from x to y if s = 1 and from y to x if s = −1).

5

Definition 9. A graph G has W -m-cliquewidth (denoted Wmcwd(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named W -m-clique operations):

(i) verA (basic construct: create a single vertex with set of labels A, A ⊆ S).
(ii) H ⊗S,h,h′ H ′ for any partial function S : S2 × {−1, 1} → W and any h, h′ : P(S)→ P(S)

(disjoint union of graphs to which is added arcs of weight w for each couple of vertices x ∈ H,
y ∈ H ′ whose sets of labels Lx, Ly contain lx, ly such that S(lx, ly, s) = w; the arc is from x
to y if s = 1 and from y to x if s = −1. Then the labels of vertices from H are changed via
h and the labels of vertices from H ′ are changed via h′).

In the last operation for W -m-cliquewidth, there is a possibility that two (or more) arcs are
added from a vertex x to a vertex y during the same operation and then the obtained graph is
not simple. For this reason, we will consider as well-formed terms only the terms (or parse-trees)
where this does not occur.

Note that we gave definitions of weighted widths to construct directed graphs. It is straight-
forward to modify these definitions to construct undirected graphs. The name of operations is
not changed except for αwa,b operation of W -cliquewidth; we will use ηwa,b instead.

The three preceding constructions of graphs can be extended to weighted graphs with loops
by adding the basic construct verloopwa or verloopwA which creates a single vertex with a loop
of weight w and label a or set of labels A. If G is a weighted graph (directed or not) with loops
and Unloop(G) denotes the weighted graph (directed or not) obtained from G by removing all
loops, then one can easily show the following result:

– ExtWcwd(G) = Wcwd(Unloop(G)).
– ExtWwdNLC(G) = WwdNLC(Unloop(G)).
– ExtWmcwd(G) = Wmcwd(Unloop(G)).

Thus we can freely define Wcwd(G) = Wcwd(Unloop(G)) in the rest of the paper. This
justifies the fact that we overlook technical details for loops in the proof of the following theorem.
Theorem 1 shows that the inequalities between the three widths are still valid in the weighted
case. It justifies our definitions of cliquewidth for weighted graphs. For the proof we collect the
ideas in [7, 11] and combine them with our definitions for weighted graphs.

Theorem 1. For any weighted graph G,

Wmcwd(G) ≤WwdNLC(G) ≤Wcwd(G) ≤ 2Wmcwd(G)+1 − 1.

Proof. First inequality:
Let G be a weighted graph of W -NLCwidth at most k and T be a parse-tree constructing G

with W -NLC operations on a set of source labels S of cardinality k. We can consider without
loss of generality that in T :

- there are no two consecutive ◦R operations, otherwise we can replace T by T ′ where the two
consecutive nodes of T with ◦R and ◦R′ operations on them have been replaced by one node
◦R′′ (R′′ = R′ ◦R).

- no vera operation is followed by a ◦R operation, otherwise we can replace T by T ′ where
these two operations are replaced by verb where b = R(a).

- each H ×S H ′ operation is followed by exactly one ◦R operation, otherwise we can add an
◦Id operation if there is none (Id is the identity function from S to S).

6

We can replace the W -NLC operation vera by the W -m-clique operation ver{a}, and the con-
secutives W -NLC operation H ×S H ′ and ◦R by the W -m-clique operation H ⊗S,h,h H ′

where h({a}) = {R(a)},∀a ∈ S. It is clear that these replacements in T will give a parse-tree
constructing G with W -m-clique operations on the same set of source labels S of cardinality k.
Hence, we have Wmcwd(G) ≤WwdNLC(G).

Second inequality:
Let G be a weighted graph of W -cliquewidth at most k and T be a parse-tree constructing G

with W -clique operations on a set of source labels S of cardinality k. We can consider without
loss of generality that in T :

- after a disjoint union operation H ⊕ H ′ all arcs in G from x ∈ H to y ∈ H ′ (resp. from y to
x) are added between the disjoint union operation H ⊕ H ′ and the first following operation
O of disjoint union or renaming. Otherwise consider the first operation αwa,b after O adding
an arc between a vertex x′ from H and a vertex y′ from H ′. We can add an operation αwa′,b′
before O where a′(resp. b′) is the label in H ⊕ H ′ of the tail (resp. head) of the arc added
by the operation αwa,b.

- each operation αwa,b adds at least one arc.
- all αwa,b operations are between a disjoint union operation H ⊕ H ′ and the first following

operation O of disjoint union or renaming.

We can replace the W -clique operation vera by the W -NLC operation vera, and the W -clique
operation ρa→b by the W -NLC operation ◦R where R(a) = b and R(c) = c,∀c ∈ S, c 6= a.
Finally each group consisting of a H ⊕ H ′ W -clique operation and the following αwa,b W -clique
operations can be replaced by the W -NLC operation H ×S H ′ where S(a, b, 1) = S(b, a,−1) = w
if there is an αwa,b operation in the group. It is clear that these replacements in T will give a parse-
tree constructing G with W -NLC operations on the same set of source labels S of cardinality k.
Hence, we have WwdNLC(G) ≤Wcwd(G).

Last inequality:
Let G be a weighted graph of W -m-cliquewidth at most k and T be a parse-tree constructing

G with W -m-clique operations on a set of source labels S of cardinality k. Let S ′ be a set of source
labels of cardinality 2k+1−1, S ′ = SltSr t{empty} where |Sl| = |Sr| = 2k−1. We define three
bijections l : P(S)\∅ → Sl, r : P(S)\∅ → Sr, and u : Sl → Sr such that u(l(A)) = r(A),∀A ∈
P(S). We will denote by ρf a sequence of ρa→b W -clique operations realizing a function f from
S ′ to S ′. We associate to each function S : S2 × {−1, 1} → W a sequence αS consisting of
αwl(A),r(B) (resp. αwr(B),l(A)) W -clique operations for all couples (a, b) ∈ S2, (A,B) ∈ (P(S)\∅)2

such that S(a, b, 1) = w (resp. S(a, b,−1) = w), a ∈ A and b ∈ B.
We can replace the W -m-clique operation verA by the W -clique operation verl(A) if A 6= ∅

and verempty otherwise. EachW -m-clique operationH⊗S,h,h′H ′ will be replaced by the following
W -clique operations:

- apply ρu to the subtree constructing H ′.
- make a H ⊕ H ′ W -clique operation.
- apply αS .
- apply ρl◦h◦l−1 .
- apply ρl◦h′◦r−1 .

It is clear that these replacements in T will give a parse-tree constructing G with W -clique
operations on the set of source labels S ′ of cardinality 2k+1 − 1. Hence, we have Wcwd(G) ≤
2Wmcwd(G)+1 − 1. ut

7

2.4 Permanent and hamiltonian polynomials

In this paper we take a graph theoretic approach to deal with permanent and hamiltonian poly-
nomials. The reason for this is that a natural way to define pathwidth, treewidth or cliquewidth
of a matrix M is by the width of the graph GM (see Section 2.2), also see e.g. [16].

Definition 10. A cycle cover of a directed graph is a subset of the arcs, such that these arcs
form disjoint, directed cycles1 (loops are allowed). Furthermore, each vertex in the graph must
be in one (and only one) of these cycles. The weight of a cycle cover is the product of weights
of all participating arcs.

Definition 11. The permanent of an (n × n) matrix M = (mi,j) is the sum of weights of all
cycle covers of GM .

The permanent of M equals the formula

per(M) =
∑
σ∈Sn

n∏
i=1

mi,σ(i).

The equivalence with Definition 11 is clear since any permutation can be written down as
a product of disjoint cycles, and this decomposition is unique. The hamiltonian polynomial
ham(M) is defined similarly, except that we only sum over cycle covers consisting of a single
cycle (hence the name).

There is a natural way of representing polynomials by permanents. Indeed, if the entries
of M are variables or constants from some field K, then f = per(M) is a polynomial with
coefficients in K (in Valiant’s terminology, f is a projection of the permanent polynomial). In
the next sections we study the power of this representation in the case where M has bounded
pathwidth or bounded cliquewidth.

2.5 Connections between permanents and sum of weights of perfect matchings

Another combinatorial characterization of the permanent is by sum of weights of perfect match-
ings in a bipartite graph. We will use this connection to deduce results for the permanent from
results for the sum of weights of perfect matchings and vice versa.

Definition 12. Let G be a directed graph (weighted or not). We define the inside-outside graph
of G, denoted IO(G), as the bipartite, undirected graph (weighted or not) obtained as follows:

– split each vertex u ∈ V (G) in two vertices u+ and u−;
– each arc uv (of weight w) is replaced by an edge between u+ and v− (of weight w). A loop

on u (of weight w) is replaced by an edge between u+ and u− (of weight w).

It is well-known that the permanent of a matrix M can be defined as the sum of weights of all

perfect matchings of IO(GM). We can see that the adjacency matrix of IO(GM) is
(

0 M
M t 0

)
.

Lemma 1. If G has treewidth (pathwidth) k, then IO(G) has treewidth (pathwidth) at most
2 · k + 1.
1 To avoid confusion with arithmetic circuits, we use directed cycles or cycles instead of circuits in this

paper.

8

Proof. Let 〈T, (Xt)t∈V (T)〉 be a k-tree(path)-decomposition of G. It is clear that 〈T, (X ′t)t∈V (T)〉,
where X ′t = {u+, u−|u ∈ Xt}, is a tree(path)-decomposition of IO(G) of width 2 · k + 1. ut

Lemma 2. If G has W -cliquewidth k, then IO(G) has W -cliquewidth at most 2 · k.

Proof. Let T be a parse-tree constructing G with W -clique operations on a set of source la-
bels S of cardinality k. We can replace the W -clique operation vera by the three operations
(vera+) ⊕ (vera−), and the W -clique operation ρa→b(H) by the W -clique operations ρa+→b+(H)
and ρa−→b−(H). Finally each αwa,b(H) W -clique operation can be replaced by the ηwa+,b−(H) W -
clique operation. It is clear that these replacements in T will give a parse-tree constructing
IO(G) with W -clique operations on the set of source labels {a+, a−|a ∈ S} of size 2 · k. ut

3 Expressiveness of matrices of bounded pathwidth

In this section we study the expressive power of permanents, hamiltonians and perfect matchings
of matrices of bounded pathwidth. We will prove that in each case we capture exactly the families
of polynomials computed by polynomial size skew circuits of bounded width. A by-product of
these proofs will be a proof of the equivalence between polynomial size skew circuits of bounded
width and polynomial size weakly skew circuits of bounded width. This equivalence can not be
immediately deduced from the already known equivalence between polynomial size skew circuits
and polynomial size weakly skew circuits in the unbounded width case [20] (the proofs in [20]
use a combinatorial characterization of the complexity of the determinant as the sum of weights
of s, t-paths in a graph of polynomial size with distinguished vertices s and t. The additional
difficulties to extend these proofs to circuits and graphs of bounded width would be equivalent
to the ones we deal with). We will then prove that skew circuits of bounded width are equivalent
to arithmetic formulas.

Definition 13. An arithmetic circuit ϕ has bounded width k ≥ 1 if there exists a finite set of
totally ordered layers such that:

- Each gate of ϕ is contained in exactly 1 layer.
- Each layer contains at most k gates.
- For every non-input gate of ϕ if that gate is in some layer n, then both inputs to it are in

layer n+ 1.

Theorem 2. The polynomial computed by a weakly skew circuit of bounded width can be ex-
pressed as the permanent of a matrix of bounded pathwidth. The size of the matrix is linear in
the size of the circuit. All entries in the matrix are either 0, 1, constants of the polynomial, or
variables of the polynomial.

Proof. Let ϕ be a weakly skew circuit of bounded width k ≥ 1 and l > 1 be the number of
layers in ϕ. The directed graph G we construct will have pathwidth at most (3 · k) − 1 (each
bag in the path-decomposition will contain at most 3 · k vertices) and the number of bags in the
path-decomposition will be l− 1. G will have two distinguished vertices s and t, and the sum of
weights of all directed paths from s to t equals the value computed by ϕ. The vertex s will be
in all bags of the path-decomposition of G.

Since ϕ is a weakly skew circuit we consider a decomposition of it into disjoint subcircuits
defined recursively as follows: The output gate of ϕ belongs to the main subcircuit. If a gate in

9

the main subcircuit is an addition gate, then both of its input gates are in the main subcircuit
as well. If a gate g in the main subcircuit is a multiplication gate, then we know that at
least one input to g is the output gate of a subcircuit which is disjoint from ϕ except for
its connection to g. This subcircuit forms a disjoint multiplication-input subcircuit. The other
input to g belongs to the main subcircuit. If some disjoint multiplication-input subcircuit ϕ′

contains at least one multiplication gate, then we make a decomposition of ϕ′ recursively. Note
that such a decomposition of a weakly skew circuit not necessarily is unique (nor does it need
to be), because both inputs to a multiplication gate can be disjoint from the rest of the circuit,
and then any one of these two can be chosen as the one that belongs to the main subcircuit.

Let ϕ0, ϕ1, . . . , ϕd be the disjoint subcircuits obtained in the decomposition (ϕ0 is the main
subcircuit). The graph G will have a vertex vg for every gate g of ϕ and d+1 additional vertices
s = s0, s1, . . . , sd (t will correspond to vg where g is the output gate of ϕ). For every gate g
in the subcircuit ϕi, the following construction will ensure that the sum of weights of directed
paths from si to vg is equal to the value computed at g in ϕ.

For the construction of G we process the decomposition of ϕ in a bottom-up manner. Let
subcircuit ϕi be a leaf in the decomposition of ϕ (so ϕi consists solely of addition gates and
input gates). Assume that ϕi is located in layers topi through boti (1 ≤ topi ≤ boti ≤ l) of ϕ.
First we add a vertex si to G in bag boti−1, and for each input gate with value w in the bottom
layer boti of ϕi we add a vertex to G also in bag boti − 1 along with an arc of weight w from si
to that vertex. Let n range from boti− 1 to topi: Add the already created vertex si to bag n− 1
and handle input gates of ϕi in layer n as previously described. For each addition gate of ϕi in
layer n we add a new vertex to G (which is added to bags n and n−1 of the path-decomposition
of G). In bag n we already have two vertices that represent inputs to this addition gate, so we
add arcs of weight 1 from both of these to the newly added vertex (if this gate has its two inputs
from the same gate, we add an arc of weight 2). The vertex representing the output gate of the
circuit ϕi is denoted by ti. The sum of weighted directed paths from si to ti equals the value
computed by the subcircuit ϕi.

Let ϕi be a subcircuit in the decomposition of ϕ that contains multiplication gates. Addition
gates and input gates in ϕi are handled as before. Let g be a multiplication gate in ϕi in layer n
and ϕj the disjoint multiplication-input subcircuit that is one of the inputs to g. We know that
vertices sj and tj already are in bag n, so we add an arc of weight 1 from the vertex representing
the other input to g to the vertex sj , and we add an arc of weight 1 from tj to a newly created
vertex vg that represents gate g, and then vg is added to bags n and n− 1.

Remark that any arc uv of weight 1 may be contracted (u and v are identified as a single
vertex) without modifying the sum of weights of paths from s to t. Moreover, the number of
vertices in each bag may only decrease. However there is a possibility to create multiple arcs
between two vertices. To avoid this possibility we only contract the arcs of weight one used
to deal with multiplication gates (this is equivalent to the construction in [18] without width
restrictions).

We create a new vertex vg for each gate g except for multiplication gates (since vg is iden-
tified with ti, but we create a vertex si for its disjoint multiplication-input subcircuit) and we
create vertex s. Moreover si is identified with vg′ for all multiplication gate g with disjoint
multiplication-input subcircuit ϕi and input gate g′. Hence it is clear that G has m + 1 − p
vertices if m is the number of gates and p the number of multiplication gates.

For every b (1 ≤ b ≤ l − 1) we need to show that only a constant number of vertices are
added to bag b during the entire process. Every gate in layer b of ϕ is represented by a vertex,
and these vertices may all be added to bag b. Every gates in layer b+ 1 are also represented by

10

a vertex, and all of these are added to bag b (because they are used as input here). In addition
a number of si vertices are also added to bag b. These tree sets of vertices may not be disjoint
since we contracted arcs. For any input gate in layer b we add at most 2 vertices to bag b. For
any multiplication gate in layer b we add at most 3 vertices to bag b (we contracted two pairs
of vertices among the 3 gate vertices and the two si). For any addition gate in layer b we add
at most 4 vertices to bag b (3 vertices if the two inputs are the same). Suppose one addition or
multiplication gate in layer b share one input in layer b+1 with another gate in layer b, then it is
easy to check this gate adds at most 2 vertices (and could be replaced by an input gate in layer
b without decreasing the number of vertices in this bag). Hence, it is clear that the maximum
number of vertices in bag b is obtained for a set of addition gates with disjoint inputs padded
with input gates in layer b. Since the number of addition gates with disjoint inputs is at most⌊
k
2

⌋
we have at most 3 · k vertices in each bag. Note that in layer 1 of ϕ we just have the output

gate. This gate is represented by the vertex t of G which is in bag 1 of the path-decomposition.
The sum of weights of all directed paths from s to t in G can by induction be shown to be

equal to the value computed by ϕ. The final step in the reduction to the permanent polynomial
is to add an arc of weight 1 from t back to s (note that s and t are both in bag 1 of the path
decomposition) and loops of weight 1 at all nodes different from s and t (contracting this arc,
one obtain a graph of size m− p). (Constant 2 can be removed with a size increase by 2 and a
width increase of 1.) ut

The proof of Theorem 2 can be modified to work for the hamiltonian polynomial as well. We
adapt the idea used to show universality of the hamiltonian polynomial in Lemma 8 of [17]. For
the permanent polynomial each bag in the path-decomposition contains at most 3 · k vertices;
for each vertex v distinct from s or t we now need to introduce one extra vertex v′ in the bags
containing v. Since our construction satisfies that two adjacent bags contain at least one common
vertex vg (for some gate g), these additionnal vertices can be connected to obtain a “backward
path” as in [17]. In total each bag now contains at most 6 · k vertices and the constructed graph
has at most 2 ·m vertices if m is the number of gates of the circuit.

Theorem 3. The polynomial computed by a weakly skew circuit of bounded width can be ex-
pressed as the sum of weights of perfect matchings of a symmetric matrix of bounded pathwidth.
The size of the matrix is linear in the size of the circuit. All entries in the matrix are either 0,
1, constants of the polynomial, or variables of the polynomial.

Proof. It is a direct consequence of Theorem 2 and Lemma 1. ut

Now we prove that the permanent, the hamiltonian, and the sum of weights of perfect
matchings of a bounded pathwidth graph can be expressed as a skew circuit of bounded width.

Theorem 4. The hamiltonian of a matrix of bounded pathwidth can be expressed as a skew
circuit of bounded width. The size of the circuit is linear in the size of the matrix.

Proof. Let M be a matrix of bounded pathwidth k and let GM be the underlying, directed
graph. Each bag in the path-decomposition of GM contains at most k + 1 vertices. We refer to
one end of the path-decomposition as the leaf of the path-decomposition and the other as the
root (recall that path-decompositions are special cases of tree-decompositions).

We process the path-decomposition of GM from the leaf towards the root. The overall idea
is the same as the proof of Theorem 5 in [10] – namely to consider weighted partial path covers
(i.e. partial covers consisting solely of paths) of subgraphs of GM that are induced by the

11

path-decomposition of GM . During the processing of the path-decomposition of GM at every
level distinct from the root, new partial path covers are constructed by taking one previously
generated partial path cover and then add at most (k + 1)2 new arcs, so all the multiplication
gates we have in our circuit are skew. For any bag in the path-decomposition of GM we only
need to consider a number of partial path covers that depends solely on k, so the circuit we
produce has bounded width. At the root we add sets of arcs to partial path covers to form
hamiltonian cycles. ut

Theorem 5. The sum of weights of perfect matchings of a symmetric matrix of bounded path-
width can be expressed as a skew circuit of bounded width. The size of the circuit is linear in the
size of the matrix.

Proof. Let M be a symmetric matrix of bounded pathwidth k and let GM be the underlying,
undirected graph. Each bag in the path-decomposition of GM contains at most k + 1 vertices.

We process the path-decomposition of GM from the leaf towards the root. The proof is very
similar to the proof of Theorem 4 – namely to consider weighted matchings of subgraphs of GM
that are induced by the matching of GM . During the processing of the matching of GM at every
level distinct from the root, new matchings are constructed by taking one previously generated
matching and then add at most (k + 1)2 new edges, so all the multiplication gates we have in
our circuit are skew. For any bag in the path-decomposition of GM we only need to consider a
number of matchings that depends solely on k, so the circuit we produce has bounded width. At
the root we sum only the weights of perfect matchings to obtain the output of the circuit. ut

Theorem 6. The permanent of a matrix of bounded pathwidth can be expressed as a skew circuit
of bounded width. The size of the circuit is linear in the size of the matrix.

Proof. It is a direct consequence of Theorem 5 and Lemma 1. ut
It is not hard to check that the circuits in the three preceding theorems may be constructed

with size O(2k
2 · n) and width less than 2k

2
if the size of the graph is n and its pathwidth is k.

Corollary 1. A family of polynomials is computable by polynomial size skew circuits of bounded
width if and only if it is computable by polynomial size weakly skew circuits of bounded width.

Proof. It is trivial to see that a family of polynomials computed by polynomial size skew circuits
of bounded width can be computed by polynomial size weakly skew circuits of bounded width.
Conversely, if a family of polynomials is computed by polynomial size weakly skew circuits of
bounded width then by Theorem 2 it can be expressed as the permanents of bounded pathwidth
graphs which can be computed by polynomial size skew circuits of bounded width according to
Theorem 6. ut

Note that this proof shows that a weakly skew circuit of size n and width k can be transformed
into a skew circuit of size O(29·k2 ·n) and width less than 29·k2

. In order to obtain better constant
factors, one may try to adapt the proof in [12] that weakly skew circuits can be transformed
into skew circuits with a size increased by a factor of 2. This proof uses s, t-graphs that are
constructed by Malod and Portier in [18]. We may use instead the s, t-graph along with its
path decomposition from the proof of Theorem 2 (the construction of the path decomposition
is the only difference with [18]). But this approach fails on the following difficulty: In [12] they
implicitly consider that the graph is processed following a topological sort of the vertices; we can
not directly have this assumption because some vertex v corresponding to a gate from a disjoint

12

subcircuit may appear in a bag before all vertices along paths from s to v have appeared. To
deal with this difficulty we should consider a “topological path decomposition” of the graph (we
define a topological path decomposition of a Directed Acyclic Graph as a path decomposition
with an orientation of the underlying path such that, for all vertices u and v, if there exists a
directed path from u to v, then the first bag containing u cannot be after the first bag containing
v)2. But it is not hard to show that there exist families of DAGs of bounded pathwidth and
unbounded topological pathwidth. Indeed consider n vertices and an additional vertex u such
that there is an arc from v to u, for all other vertex v. Clearly, this graph has pathwidth 1 and
topological pathwidth n.

One may prove that such families exist with bounded degree. (Consider a rectangular grid
with n rows and 2k+1 columns; orient all vertical arcs from top to bottom; orient the horizontal
arcs to the left (resp. right) if the arc is on the left (resp. right) of the middle column. Add an
arc from bottom left vertex to the vertex w adjacent to the right of the middle vertex of the
top row. Clearly, for n larger than 2k + 1, this graph has pathwidth 2k + 2 (decompose rows
after rows, keeping w in all bags) but its topological pathwidth is n + k + c, for one value of
c ∈ {1, 2, 3}, because you must decompose first the left half and keep all vertices of the middle
column in the bag before you can decompose the right half.) If we consider directed graphs with
cycles the counter-example is even simpler...

Our s, t-graph can easily contain grid rectangular subgraphs. But these grid subgraphs may
come only from addition gates and thus does not comport an additionnal arc as in the last
counter-example. In order to prove that our s, t graph may have unbounded topological path-
width, we proceed as follows: Consider a weakly skew circuit C of width k with a distinguished
skew multiplication gate g. We define a family (Ci) of weakly skew circuits of width at most
k + 2 as follows:

– C0 = C, g0 = g;
– Ci+1 is obtained from Ci adding a copy C ′ of C on new top layers and the output of C ′

replaces the skew input of gi; we have to freeze (with an addition gate with one input 0) the
result of C ′ until it reaches the layer above gi (hence the width k + 2). gi+1 = g′.

It is not hard to see that C may be such that the topological pathwidth of the corresponding
s, t-graphs (Gi) will satisfy tpw(Gi) ≥ i · c+ tpw(C), for some positive constant c.

For these reasons, the followings are interesting open questions: Is it possible to prove equiv-
alence between skew and weakly skew circuits of bounded width without using the brute force
approach of dynamic programming on bounded width path decomposition? May one obtain a
transformation from weakly skew to skew with a size and width increase polynomial in k? Does
it requires that the size is no more linear in n?

We need the following Theorem from [1] to prove the equivalence between polynomial size
skew circuits of bounded width and polynomial size arithmetic formulas.

Theorem 7. Any arithmetic formula can be computed by a linear bijection straight-line program
of polynomial size that uses three registers.

Let R1, . . . , Rm be a set of m registers, a linear bijection straight-line (LBS) program is a
vector of m initial values given to the registers plus a sequence of instructions of the form
2 This notion differs from the directed pathwidth introduced by Reed, Robertson, and Seymour. As an

example of this difference, one may remark that the directed pathwidth is smaller than the pathwidth,
while the topological pathwidth is greater.

13

(i) Rj ← Rj + (Ri × c), or
(ii) Rj ← Rj − (Ri × c), or

(iii) Rj ← Rj + (Ri × xu), or
(iv) Rj ← Rj − (Ri × xu),

where 1 ≤ i, j ≤ m, i 6= j, 1 ≤ u ≤ n, c is a constant, and x1, . . . , xn are variables (n is the
number of variables). We suppose without loss of generality that the value computed by the
LBS program is the value in the first register after all instructions have been executed.

The following theorem is now a direct consequence of [1] (note that skew circuits were
introduced by Toda in [20] a few years after Ben-Or and Cleve’s theorem).

Theorem 8. A family of polynomials is computable by polynomial size skew circuits of bounded
width if and only if it is computable by a family of polynomial size arithmetic formulas.

Proof. Let (fn) be a family of polynomials computable by polynomial size skew circuits of
bounded width, then by Theorem 2 it can be expressed as the permanents of bounded pathwidth
graphs. Since graphs of bounded pathwith have bounded treewidth, we know by Theorem 5
in [10] that it can be computed by a family of polynomial size arithmetic formulas.

Conversely, if (fn) is a family of polynomial size arithmetic formulas, then by Theorem 7, it is
computable by linear bijection straight-line programs of polynomial size that use three registers.
We will modify these programs to obtain equivalent skew circuits of width 6. At each step, the
set of indices {i, j, k} will be equal to {1, 2, 3}.

Suppose the initial values of the three registers are r1, r2, r3, then the first layer of our skew
circuit contains three input gates with the three values r1, r2, r3 along with two others inputs
which will be defined according to the next instruction in the straight-line program.

If the next instruction is Rj ← Rj + (Ri × U) where U is a variable or a constant, then
we assign the values 0 and U to the two input gates not already defined in the current layer
l and we create a new layer l − 1 with three addition gates corresponding to Ri, Rj , Rk whose
inputs are the gate corresponding to Ri (resp. Rj , Rk) in layer l and the input with value 0 in
layer l. We also put a multiplication gate whose inputs are the gate corresponding to Ri and the
input with value U in layer l. And we put again an input gate with value 0. Then we create a
new layer l− 2 with three addition gates corresponding to Ri, Rj , Rk whose inputs are the gate
corresponding to Ri (resp. Rj , Rk) and the input with value 0 for i, k or the gate computing
(Ri × U) for j in layer l − 1. We also put two others inputs which will be defined according to
the next instruction.

If the next instruction is Rj ← Rj − (Ri × U), then we need to create one more layer than
in the first case. We first assign the values 0 and U to the two input gates not already defined
in the current layer l and we create a new layer l − 1 with three addition gates corresponding
to Ri, Rj , Rk whose inputs are the gate corresponding to Ri (resp. Rj , Rk) in layer l and the
input with value 0 in layer l. We also put a multiplication gate whose inputs are the gate
corresponding to Ri and the input with value U in layer l. And we put again an input gate with
value 0 and another one with value −1. Then we create an intermediate new layer l − 2 with
three addition gates corresponding to Ri, Rj , Rk whose inputs are the gate corresponding to Ri
(resp. Rj , Rk) and the input with value 0. We also put a multiplication gate whose inputs are the
gate computing (Ri×U) and the input with value −1 in layer l− 1. And we put again an input
gate with value 0. Finally we create a new layer l − 3 with three addition gates corresponding
to Ri, Rj , Rk whose inputs are the gate corresponding to Ri (resp. Rj , Rk) and the input with
value 0 for i, k or the gate computing −(Ri × U) for j in layer l − 2. We also put two others
inputs which will be defined according to the next instruction.

14

In both cases, it is clear by induction that the three gates of the current layer corresponding
to Ri, Rj , Rk are computing the values in these registers if we execute the instructions treated
so far. Hence the result. ut

Alternatively, one may state/prove this theorem using iterated multiplication of constant
width matrices: Clearly instructions of a LinearBS program can be done with 3 × 3 matrices
multiplication. And iterated multiplication of constant width matrices may be done with a
balanced binary tree of matrix multiplication gates (matrix multiplication is associative) of
logarithmic depth; each matrix multiplication gate can be done with a constant number of
addition and multiplication gates and logarithmic depth circuits are equivalent to formulas. It
is not hard to see that n iterated products of k × k matrices can be done with (weakly) skew
circuits of width k3 + k2 over (2 + dlog(k)e) · n layers (note that weakly skew circuits are not
better here than skew since the only reasonable way to obtain a disjoint multiplication input
for each multiplication gate is to duplicate k times the entries of the last matrix multiplied to
the product of the preceding matrices). Hence it shows that formulas may be computed by skew
circuits of width 36, while our proof constructs skew circuits of width 6 (our construction can be
generalized to show that skew circuits of width m+3 (m+2 if we allow subtraction gates, m+1
if we also allow freezing gates) can simulate LBS program on m registers). Reciprocally it is
trivial to evaluate a skew circuit of width k with iterated product of k× k matrices. There does
not seem to be any shortcut to evaluate weakly skew circuits of bounded width with iterated
product of constant width matrices without using our result.

4 Expressiveness of matrices of bounded weighted cliquewidth

In this section we study the expressive power of permanents, hamiltonians, and perfect matchings
of matrices that have bounded weighted cliquewidth.

We first prove that every arithmetic formula can be expressed as the permanent, hamiltonian,
or sum of weights of perfect matchings of a matrix of bounded W -cliquewidth, using Ben-Or
and Cleve’s result and the following lemma.

Lemma 3. Let G be a weighted graph (directed or not) with weights in W . If G has pathwidth
k, then G has W -cliquewidth at most k + 2.

Proof. Let 〈T, (Xt)t∈V (T)〉 be a k-path-decomposition of G. We refer to one end of the path-
decomposition as the leaf of the path-decomposition and the other as the root. Let Gt be the
subgraph of G induced by the vertices in bags below Xt.

We prove by induction on the height of 〈T, (Xt)t∈V (T)〉 that every graph Gt can be con-
structed by W -clique operations using at most k+ 2 distinct labels. Moreover, at the end of this
construction all vertices in bag Xt have distinct labels and all other vertices have a sink label.

If |V (T)| = 1 then G has at most k + 1 vertices. We can create them with k + 1 distinct
labels and add independently each edge between two vertices using W -clique operations.

Suppose |V (T)| > 1, let r be the root and t be its child. By induction, Gt can be constructed
by W -clique operations using at most k + 2 distinct labels. For all vertex v ∈ Xt\Xr, we add a
renaming operation which gives sink label to v (this renaming operation renames only v since,
by induction, v has distinct label from other vertices). Since |Xr| ≤ k + 1 and all vertices in
V (G)\Xr have sink label, we can create the vertices of Xr\Xt with distinct labels and add
them by disjoint union to the current construction. It is now clear that all the vertices of Xr

have distinct labels thus we can add independently each edge between two vertices. Hence the
conclusion. ut

15

Theorem 9. Every arithmetic formula can be expressed as the permanent of a matrix of W -
cliquewidth at most 7 and size polynomial in n, where n is the size of the formula. All entries
in the matrix are either 0, 1, -1, constants of the formula, or variables of the formula.

Proof. Let ϕ be a formula of size n. From Ben-Or and Cleve’s construction, one obtains a leveled
s, t-graph with at most 4 vertices on each level (3 vertices if negated variables are allowed on
the weights of the arcs) such that ϕ equals the sum of weights of s, t-paths. Adding an arc
from t to s, and loops on other vertices, it is clear that we obtain a graph G of pathwidth 5
and W -cliquewidth at most 5 + 2 = 7 by Lemma 3 such that per(G) = ϕ. Clearly G has size
O(nO(1)). ut

For the hamiltonian the W -cliquewidth becomes (2 · 6− 1) + 2 = 13 instead.

Theorem 10. Every arithmetic formula can be expressed as the sum of weights of perfect match-
ings of a symmetric matrix of W -cliquewidth at most 14 and size polynomial in n, where n is
the size of the formula. All entries in the matrix are either 0, 1, -1, constants of the formula,
or variables of the formula.

Proof. It is a direct consequence of Theorem 9 and Lemma 2. ut

Alternatively we can modify the constructions of bounded treewidth graphs expressing for-
mulas in [10]. These modifications require more work than the preceding proofs and we obtain
bigger constants since we obtain graphs of W -cliquewidth at most 13/34/26 (instead of 7/13/14)
whose permanent/hamiltonian/sum of weights of perfect matchings are equal to formulas. But
the constructed graphs have two additional properties: their size is linear in the size of the for-
mula while using Ben-Or and Cleve’s result gives graphs of at least quadratic size; they do not
use −1 on edges (except if −1 is a constant of the formula). The proofs of these constants are
given in the Appendix.

Due to our restrictions on how weights are assigned in our definition of bounded W -clique-
width it is not true that weighted graphs of bounded treewidth have bounded W -cliquewidth.
In fact, if one tries to follow the proofs in [6, 3] that show that graphs of bounded treewidth
have bounded cliquewidth, then one obtains that a weighted graph G of treewidth k has W -
cliquewidth at most 3 · (|WG| + 1)k−1 or 3 · (∆ + 1)k−1. WG denotes the set of weights on the
edges of G and ∆ is the maximum degree of G. Weighted trees still have bounded W -cliquewidth
(the bound is 3), but we can show that there exists a family of weighted graphs with treewidth
2 and unbounded W -cliquewidth [14] (the proof uses binary trees with an additional universal
vertex v such that no two edges from v have the same weigth and the fact that the cut-width of
binary trees is unbounded, see [15] for details). However, by a result of Bodlaender [2], graphs of
treewidth k have pathwidth O(k log(n)) and thus, by Lemma 3, have W -cliquewidth O(k log(n)).

It is somehow possible to redefine W -cliquewidth so that bounded treewidth implies bounded
W -cliquewidth. It involves mixing (almost taking the disjoint union of) operations from W -
cliquewidth and HR grammars (an equivalent characterization of treewidth). However, with
parallel composition of HR grammars there is the possibility that a pair of neighbor vertices
u, v is identified with a pair of neighbor vertices w, x in a pair of vertex y, z. It is not clear which
weight should be given to the edge yz to avoid multiple edges between two vertices (the sum of
uv and wx? or we can say that the term is well-formed if and only if there is no multiple edges)).
One would have to consider two sets of “tree-labels” and “clique-labels” and associate to each
vertex a tree-label and a clique-label. The “width” could be defined as the maximum or the sum
of the numbers of tree-labels and clique-labels. The obtained graphs would look like bounded

16

W -cliquewidth pieces glued together along a tree-structure where each piece is glued to the rest
of the graph on a bounded number of vertices. It is the opinion of the second author that this
mixed definition would be “ugly”, and that the results presented here may be generalized to
this more general “width”, with a tiedous proof using a mix of the constructions for bounded
treewidth and bounded weighted cliquewidth graphs.

We now turn to the upper bound on the complexity of the permanent, hamiltonian, and sum
of weights of perfect matchings of graphs of bounded weighted cliquewidth. We show that in all
three cases the complexity is at most the complexity of VP.

The decision version of the hamiltonian cycle problem has been shown to be polynomial
time solvable in [8] for matrices of bounded cliquewidth. Here we extend these ideas in order to
compute the hamiltonian polynomial efficiently (in VP) for bounded W -m-cliquewidth matrices.

Definition 14. A path cover of a directed graph G is a subset of the arcs of G, such that
these arcs form disjoint, directed, non-cyclic paths in G. We require that every vertex of G is
in (exactly) one path. For technical reasons we allow “paths” of length 0, by having paths that
start and end in the same vertex. Such constructions do not have the same interpretation as a
loop. The weight of a path cover is the product of weights of all participating arcs (in the special
case where there are no participating arcs the weight is defined to be 1).

Theorem 11. The hamiltonian of an n×n matrix of bounded W -m-cliquewidth can be expressed
as a circuit of size O(nO(1)) and thus is in VP.

Proof. Let M be an n×n matrix of bounded W -m-cliquewidth. By G we denote the underlying,
directed, weighted graph for M . The circuit is constructed based on the parse-tree T for G. By
Tt we denote the subtree of T rooted at t for some node t ∈ T . By Gt we denote the subgraph of
G constructed from the parse-tree Tt. Let k be the W -m-cliquewidth of G. We assume without
loss of generality that T is a parse-tree on the set of labels {a1, ..., ak}.

The overall idea is to produce a circuit that computes the sum of weights of all hamiltonian
cycles of G. To obtain this there will be non-output gates that compute weights of all path covers
of all Gt graphs, and then we combine these subresults. Of course, the total number of path
covers can grow exponentially with the size of Gt, so we will not “describe” path covers directly
by the arcs participating in the covers. Instead we describe a path cover of some Gt graph by
the sets of labels associated with the start- and end-vertices of the paths in the cover. Such a
description do not uniquely describe a path cover, because two different path covers of the same
graph can contain the same number of paths and all these paths can have the same sets of labels
associated. However, we do not need the weight of each individual path cover. If multiple path
covers of some graph Gt share the same description, then we just compute the sum of weights
of these path covers. Let d be equal to 2k. It is clear that the number of descriptions needed is
at most nd

2
. Let A =

⋃d
i=1{Ai} be the powerset of {a1, ..., ak}.

For a leaf verAi in the parse-tree T of G we construct a single gate of constant weight 1,
representing a path cover consisting of a single “path” of length 0, starting and ending in a vertex
with the given labels. Per definition this path cover has weight 1. The description associated to
this gate is (n1,1 = 0, n1,2 = 0, . . . , ni,i = 1, . . . , nd,d = 0), where nx,y is the number of paths
with a start-vertex labeled Ax and an end-vertex labeled Ay.

For an internal node t ∈ T with operation H ⊗S,h,h′ H ′ the grammar rule describes which
arcs to add and how to relabel vertices. We obtain new path covers by considering a path cover
from the left child of t and a path cover from the right child of t: For each such pair of path covers
consider all subsets of arcs added at node t, and for every subset of arcs check if the addition of

17

these arcs to the pair of path covers will result in a valid path cover. If it does, then add a gate
that computes the weight of this path cover, by multiplying the weight of the left path cover, the
weight of the right path cover and the total weight of the newly added arcs. More precisely, we
first create a multiplication gate using the values of each couple of terminal gates of the left child
l of t and the right child r of t. It corresponds to the weights of the disjoint unions of the path
covers of l and r. There are at most n2d2 such gates. Those gates are the new terminal gates. To
each gate, we associate a left and right description corresponding to the vertices from l and r.
For reasons that will appear later, we associate also a cross-left-right (clr) and a cross-right-left
(crl) description. Clr description (resp. crl description) corresponds to paths of the path covers
with start-vertex in Gl (resp. Gr) and end-vertex in Gr (resp. Gl). These clr and crl descriptions
are equal to the 0 vector (or bidimensional matrix) of length d · d. We put the following total
order a1 < a2 < · · · < ak on the labels and the corresponding lexicographic order on the couples
(ai, aj). In a first phase we obtain new path covers adding arcs going from left to right. In a
second phase we obtain new path covers adding arcs going from right to left. We will consider
that the arcs added via S are added by blocks corresponding to a couple (ai, aj) and that all
blocks of arcs are added sequentially in lexicographic order. Thus we have at most k2 steps of
adding arcs to consider in each phase.

Suppose S(ai, aj , 1) = wij . Let Ai1 , Ai2 , . . . , Aic (resp. Aj1 , Aj2 , . . . , Ajc) be the sets of labels
containing ai (resp. aj), where c equals 2k−1. We divide the step corresponding to (ai, aj) into
c2 sub-steps.

For each sub-step corresponding to indices 1 ≤ s, y ≤ c, we obtain new path covers by consid-
ering each terminal gate g. Let (n1,1, . . . , nd,d), (n′1,1, . . . , n

′
d,d), (n′′1,1, . . . , n

′′
d,d) and (n′′′1,1, . . . , n

′′′
d,d)

be the left, right, clr and crl descriptions of g. Each added arc can be taken into account in a
path cover if and only if it links the end vertex of a path to the beginning of another path where
these two vertices does not come from the same subgraph Gl or Gr.

In order to obtain new path covers adding arcs going from left to right of weight wij , we
consider all couples co of the four following types:

– Type 1:(nr,is , n
′
jy,z

),
– Type 2:(nr,is , n

′′′
jy,z

),
– Type 3:(n′′′r,is , n

′
jy,z

),
– Type 4:(n′′′r,is , n

′′′
jy,z

),

1 ≤ r, z ≤ d, corresponding to sets of paths that may be linked by new arcs (the first paths may
come from left or crl description and the second may come from right or crl description). There
are 4 · d2 such couples. For each such couple let ncomin =

– min{nr,is , n′jy,z},
– min{nr,is , n′′′jy,z},
– min{n′′′r,is , n

′
jy,z
},

– min{n′′′r,is , n
′′′
jy,z
}.

For all path cover corresponding to g and all b between 0 and ncomin we can obtain Ccob =

–
(
nr,is
b

)
·
(n′jy,z

b

)
,

–
(
nr,is
b

)
·
(n′′′jy,z

b

)
,

–
(n′′′r,is

b

)
·
(n′jy,z

b

)
,

18

–
(n′′′r,is

b

)
·
(n′′′jy,z

b

)
, (r, z) 6= (jy, is),

– Bbm = m·(m−1)2·(m−2)2...(m−b+1)2·(m−b)
b! , where m = n′′′jy,is , (r, z) = (jy, is),

path covers by adding b arcs of weight wij from b vertices among nr,is (resp. n′′′r,is) of Gl to b
vertices among n′jy,z (resp. n′′′jy,z) of Gr. The type 4 couple (n′′′jy,is , n

′′′
jy,is

) is special because it
is the only possibility to create cycles while adding arcs going from left vertices with labels Ais
to right vertices with labels Ajy . Note that Bbm = L(m,m − b) where L(n, k) are the unsigned
Lah numbers (L(n, k) = n!

k!

(
n−1
k−1

)
counts the number of ways to partition a set of cardinality n

in k non-empty linearly ordered subsets). Formally we do not need type 2, 3, and 4 in the first
phase since type 1 with left and right paths will only create clr paths. However we prefer to fully
detail what may happen in a general context since the second phase will use the symmetrics of
type 2, 3, and 4 (by symmetry, we will not detail the second phase).

Now consider the set of all couples (co1, . . . , cop) and (b1, . . . , bp) a choice of b for all couples
(where p = 4 · d2). These choices are compatible if and only if the following conditions are
satisfied:

– ∀r, 1 ≤ r ≤ d,
∑
x∈X bx ≤ nr,is , where X is the set of indices corresponding to type 1 and

type 2 couples with first element nr,is ,
– ∀r, 1 ≤ r ≤ d,

∑
x∈X bx ≤ n′′′r,is , where X is the set of indices corresponding to type 3 and

type 4 couples with first element n′′′r,is ,
– ∀z, 1 ≤ z ≤ d,

∑
x∈X bx ≤ n′jy,z, where X is the set of indices corresponding to type 1 and

type 3 couples with second element n′jy,z,
– ∀z, 1 ≤ z ≤ d,

∑
x∈X bx ≤ n′′′jy,z, where X is the set of indices corresponding to type 2 and

type 4 couples with second element n′′′jy,z.

Note that n′′′jy,is must satisfy the second and fourth conditions.
Let b denote such a set of choices. We assume without loss of generality that co1 =

(n′′′jy,is , n
′′′
jy,is

). We extend the definition of Ccob in order to take into account the other cou-
ples as follows: Cco1b = Bb1m , where m = n′′′jy,is , Ccoi

b =
(
n1
bi

)
·
(
n2
bi

)
, 2 ≤ i ≤ p, where

– n1 = nr,is − (
∑
x∈X bx), n2 = n′jy,z − (

∑
y∈Y by), where X (resp. Y) is the set of indices

smaller than i corresponding to type 1 and type 2 couples with first element nr,is (resp. type
1 and type 3 couples with second element n′jy,z),

– n1 = nr,is − (
∑
x∈X bx), n2 = n′′′jy,z − (

∑
y∈Y by), where X (resp. Y) is the set of indices

smaller than i corresponding to type 1 and type 2 couples with first element nr,is (resp. type
2 and type 4 couples with second element n′′′jy,z),

– n1 = n′′′r,is − (
∑
x∈X bx), n2 = n′jy,z − (

∑
y∈Y by), where X (resp. Y) is the set of indices

smaller than i corresponding to type 3 and type 4 couples with first element n′′′r,is (resp. type
1 and type 3 couples with second element n′jy,z),

– n1 = n′′′r,is − (
∑
x∈X bx), n2 = n′′′jy,z − (

∑
y∈Y by), where X (resp. Y) is the set of indices

smaller than i corresponding to type 3 and type 4 couples with first element n′′′r,is (resp. type
2 and type 4 couples with second element n′′′jy,z).

Let q =
∑p
i=1 bi. For all set of compatible choices b 6= 0 (0 corresponds to adding no arc and thus

corresponds to g) we add a multiplication gate with inputs g and the constant (
∏p
i=1 C

coi

bi
)·(wij)q

(if wij is a variable we have to compute (wij)q with at most 2 · log(n) addition and multiplication
gates since q < n). We obtain the left, right, clr, and crl descriptions of this new gate gb from
the descriptions of g to which are performed the following modifications:

19

– Type 1:
• left: nr,is ← nr,is − b,
• right: n′jy,z ← n′jy,z − b,
• clr: n′′r,z ← n′′r,z + b,
• crl: no modification,

– Type 2:
• left: nr,is ← nr,is − b, nr,z ← nr,z + b,
• right: no modification,
• clr: no modification,
• crl: n′′′jy,z ← n′′′jy,z − b,

– Type 3:
• left: no modification,
• right: n′jy,z ← n′jy,z − b, n

′
r,z ← n′r,z + b,

• clr: no modification,
• crl: n′′′r,is ← n′′′r,is − b,

– Type 4:
• left: no modification,
• right: no modification,
• clr: no modification,
• crl: n′′′r,is ← n′′′r,is − b, n

′′′
jy,z
← n′′′jy,z − b, n

′′′
r,z ← n′′′r,z + b,

Since b < n, there are at most np (compatible) choices and thus at most np − 1 new terminal
gates for each terminal gate g. We end this sub-step making addition trees computing the sums
of the terminal gates which have the same left, right, clr, and crl descriptions. The outputs of
these trees are the new terminal gates for the next sub-step or step.

The c2 sub-steps of the k2 steps are all handled similarly. The second phase where we obtain
new path covers adding arcs going from right to left is symmetric.

After these two phases we rename vertices with h and h′. We modify left, right, clr, and crl
descriptions of each terminal gate accordingly:

– (n1,1 ←
∑
Ax,Ay∈h−1(A1)

nx,y, . . . , ni,j ←
∑
Ax∈h−1(Ai),Ay∈h−1(Aj)

nx,y, . . . ,

nd,d ←
∑
Ax,Ay∈h−1(Ad) nx,y),

– (n′1,1 ←
∑
Ax,Ay∈h′−1(A1)

n′x,y, . . . , n
′
i,j ←

∑
Ax∈h′−1(Ai),Ay∈h′−1(Aj)

n′x,y, . . . ,

n′d,d ←
∑
Ax,Ay∈h′−1(Ad) n

′
x,y),

– (n′′1,1 ←
∑
Ax∈h−1(A1),Ay∈h′−1(A1)

n′′x,y, . . . , n
′′
i,j ←

∑
Ax∈h−1(Ai),Ay∈h′−1(Aj)

n′′x,y, . . . ,

n′′d,d ←
∑
Ax∈h−1(Ad),Ay∈h′−1(Ad) n

′′
x,y),

– (n′′′1,1 ←
∑
Ax∈h′−1(A1),Ay∈h−1(A1)

n′′′x,y, . . . , n
′′′
i,j ←

∑
Ax∈h′−1(Ai),Ay∈h−1(Aj)

n′′′x,y, . . . ,

n′′′d,d ←
∑
Ax∈h′−1(Ad),Ay∈h−1(Ad) n

′′′
x,y).

We compute the description of each terminal gate as the sum of its left, right, clr, and crl
description, then, for each description, we put an addition tree computing the sum of the terminal
gates which have this same global description. The outputs of these trees are the new terminal
gates.

For the root node r of T we combine path covers from the children of r to produce hamiltonian
cycles, instead of path covers. (If we handle the root node as any other internal node, we obtain
the sum of weigths of all hamiltonian paths with a summation of all terminal gates having a
description containing only one path in the path cover.) As we noted before, we can only create

20

cycles during the second phase with couples (n′′is,jy , n
′′
is,jy

). Thus we process the first phase as
usual and the second phase as follows: For each substep and each gate g, if its left, right, clr, and
crl descriptions are all 0, except for n′′is,jy = m, then there are m!

m ways of joining these n′′is,jy
paths in one cycle. Thus we add a multiplication gate with inputs g and the constant m!

m · (wij)
m

(its description is 0). Otherwise gate g is processed as usual. Finally, the output of the circuit
is a summation of all gates with description 0.

Proof of correctness:
The key argument is the following: Arcs are added hierarchically during operations, phases,

steps, and substeps; at each level the considered sets of arcs are a partition of the set of arcs3.
The first step of the proof is by induction over the height of the parse-tree T . We will show that
for each non-root node t of T there is for every path cover description of Gt a corresponding gate
in the circuit that computes the sum of weights of all path covers of Gt with that description.
For the base cases - leaves of T - it is trivially true.

For the inductive step we consider two disjoint graphs that are being connected with arcs at
a node t of the parse-tree T . Arcs added at node t are only added in here, and not at any other
nodes in T , so every path cover of Gt can be split into 3 parts: A path cover of Gtl , a path cover
of Gtr , and a polynomial number of arcs added at node t. Consider a path cover description
along with all path covers of Gt that have this description. All of these path covers can be split
into 3 such parts, and by our induction hypothesis the weights of the path covers of Gtl and Gtr
are computed in already constructed gates.

In order to complete the proof of correctness we have to handle the root t of T in a special
way. At the root we do not compute weights of path covers, but instead compute weights of
hamiltonian cycles. Every hamiltonian cycle of G can (similarly to path covers) be split into 3
parts: A path cover of Gtl , a path cover of Gtr , and a polynomial number of arcs added at the
root of T . By our induction hypothesis all the needed weights are already computed.

The size of the circuit is polynomial since at each step the number of path cover descriptions
is polynomially bounded once the W -m-cliquewidth is bounded. (The number of new gates added
for each operation H ⊗S,h,h′ H ′ is at most 16·k2 ·c2 ·n2p ·log(n) = O(k2 ·22k ·n8·22k ·log(n)).4 Since
the number of these operations is at most n, the circuit has size O(k2 ·22k ·n8·22k+1 · log(n)).) ut

Theorem 12. The sum of weights of perfect matchings of an n×n symmetric matrix of bounded
W -NLCwidth can be expressed as a circuit of size O(nO(1)) and thus is in VP.

Proof. Let M be an n × n symmetric matrix of bounded W -NLCwidth. By G we denote the
underlying, undirected, weighted graph for M . The circuit is constructed based on the parse-tree
T for G. By Tt we denote the subtree of T rooted at t for some node t ∈ T . By Gt we denote the
subgraph of G constructed from the parse-tree Tt. Let k be the W -NLCwidth of G. We assume
without loss of generality that T is a parse-tree on the set of labels {a1, . . . , ak}.

The overall idea is much similar to that of Theorem 11, namely to produce a circuit that
computes the sum of weights of all perfect matchings of G. To obtain this there will be non-
output gates that compute weights of all matchings of all Gt graphs, and then we combine these

3 For this reason, W -NLCwidth and W -m-cliquewidth are more appropriate than W -cliquewidth to
design a dynamic programming scheme for counting or evaluation problems. Its interest is restricted
to proofs of boundedness.

4 Using W -NLCwidth instead of W -m-cliquewidth, one may obtain a similar construction without

substeps. The number of gates would be O(k2 · n8·k2
· log(n)), where k is the NLCwidth.

21

subresults. Of course, the total number of matchings can grow exponentially with the size of Gt,
so we will not “describe” matchings directly by the edges participating in the covers. Instead we
describe a matching of some Gt graph by the labels associated to the uncovered vertices. More
precisely, for each matching of Gt and each label a we give the number of a-vertices which are not
covered by the matching. Such a description do not uniquely describe a matching, because two
different matchings of the same graph can have the same number of uncovered vertices which
have the same labels associated. However, we do not need the weight of each individual matching.
If multiple matchings of some graph Gt share the same description, then we just compute the
sum of weights of these matchings. It is clear that the number of description needed is at most
nk.

For a leaf verai in the parse-tree T of G we construct a single terminal gate of con-
stant weight 1, representing an empty matching. The description associated to this gate is
((a1, 0), . . . , (ai, 1), . . . , (ak, 0)).

For an internal node t ∈ T with operation ◦R(H) we just need to change the description of
terminal gates in the circuit contructed so far. More precisely, if the description of the gate was
((a1, n1), . . . , (ai, ni), . . . , (ak, nk)) then it becomes

((a1,
∑

aj∈R−1(a1)

nj), . . . , (ai,
∑

aj∈R−1(ai)

nj), . . . , (ak,
∑

aj∈R−1(ak)

nj)).

For an internal node t ∈ T with operation H ×S H ′ the grammar rule describes which edges
to add. We first create a multiplication gate using the values of each couple of terminal gates
of the left child l of t and the right child r of t. It corresponds to the weights of the disjoint
unions of the matchings of l and r. There are at most n2k such gates. To each gate, we associate
a left and right description corresponding to the vertices from l and r. Those gates are the new
terminal gates. We put the following total order a1 < a2 < · · · < ak on the labels and the
corresponding lexicographic order on the couples (ai, aj). We will consider that the edges added
via S are added by blocks corresponding to a couple (ai, aj) (all edges in the same block are
added at the same time) and that all blocks of edges are added sequentially in lexicographic
order. Thus we have at most k2 steps of adding edges to consider. Suppose S(ai, aj) = wij .
For the step corresponding to (ai, aj) we obtain new matchings by considering each terminal
gate g0. Let ((a1, n1), . . . , (ai, ni), . . . , (ak, nk)) and ((a1, n

′
1), . . . , (aj , n′j), . . . , (ak, n

′
k)) be the

left and right description of g0. Let nmin = min{ni, n′j}. For all matching corresponding to
g0 and all p between 0 and nmin we can obtain

(
ni

p

)
·
(
n′j
p

)
matchings by adding p edges of

weight wij between p vertices among ni of Gl and p vertices among n′j of Gr. Hence, for all
p 6= 0 we add a multiplication gate with inputs g0 and the constant

(
ni

p

)
·
(
n′j
p

)
· (wij)p (if wij is a

variable we have to compute (wij)p with at most 2·log(n) addition and multiplication gates since
p < n). This new gate gp has left and right description ((a1, n1), . . . , (ai, ni − p), . . . , (ak, nk))
and ((a1, n

′
1), . . . , (aj , n′j−p), . . . , (ak, n′k)). There are at most n2k+1 such new gates since p < n.

Finally we make an addition tree computing the addition of the gates gp which have the same
left and right description. Each such tree needs at most O((2k + 2) log(n)) new gates and there
are at most n2k trees. The outputs of these trees are the new terminal gates. When all the k2

steps of adding edges are done we compute the description of each terminal gate as the sum
of its left and right description, then we put an addition tree computing the addition of the
terminal gates which have the same global description. The outputs of these trees are the new
terminal gates.

22

Finally, we obtain the output of the circuit at the root node r of T . It is the output of the
terminal gate with description ((a1, 0), . . . , (ai, 0), . . . , (ak, 0)).

Proof of correctness: The first step of the proof is by induction over the height of the parse-
tree T . We will show that for each node t of T there is for every matching description of Gt a
corresponding gate in the circuit that computes the sum of weights of all matchings of Gt with
that description. For the base cases - leaves of T - it is trivially true.

For the inductive step we consider two disjoint graphs that are being connected with edges at
a node t of the parse-tree T . Edges added at node t are only added in here, and not at any other
nodes in T , so every matching of Gt can be split into 3 parts: A matching of Gtl , a matching of
Gtr , and a polynomial number of edges added at node t. Consider a matching description along
with all matchings of Gt that have this description. All of these matchings can be split into 3
such parts, and by our induction hypothesis the weights of the path covers of Gtl and Gtr are
computed in already constructed gates.

The number of new gates added for each operation H ×S H ′ is at most O(k2 ·n2k+1 · log(n)).
Since the number of these operations is at most n, we obtain a circuit of polynomial size. ut

Theorem 13. The permanent of an n×n matrix of bounded W -m-cliquewidth can be expressed
as a circuit of size O(nO(1)) and thus is in VP.

Proof. It is a direct consequence of Theorem 12 and Lemma 2. ut

5 Acknowledgements

Much of this work was done while U. Flarup was visiting the ENS Lyon during the spring
semester of 2007. This visit was partially made possible by funding from Ambassade de France
in Denmark, Service de Coopération et d’Action Culturelle, Ref.:39/2007-CSU 8.2.1.

We wish to thanks anonymous referees for useful suggestions (in particular, a referee sug-
gested a great improvement to the constants in theorems 9 and 10).

References

1. M. Ben-Or and R. Cleve. Computing Algebraic Formulas Using a Constant Number of Registers.
In STOC 1988, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pages 254–257 ACM (1988).

2. Hans L. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput.
Sci. 209, pages 1–45 (1998).

3. D. Corneil and U. Rotics. On the Relationship Between Clique-Width and Treewidth. SIAM Journal
on Computing 34, pages 825–847 (2005).

4. B. Courcelle, J. Engelfriet and G. Rozenberg. Context-free Handle-rewriting Hypergraph Grammars.
In Graph-Grammars and Their Application to Computer Science, pages 253–268, 1990.

5. B. Courcelle, J. A. Makowsky and U. Rotics. On the fixed parameter complexity of graph enumer-
ation problems definable in monadic second-order logic. Discrete Applied Mathematics 108, pages
23–52 (2001).

6. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathe-
matics 101, pages 77–114 (2000).

7. B. Courcelle and A. Twigg. Compact Forbidden-Set Routing. In STACS 2007, Proceedings of the
24th International Symposium on Theoretical Aspects of Computer Science, volume 4393 of Lecture
Notes in Computer Science, pages 37–48 Springer Verlag (2007).

23

8. W. Espelage, F. Gurski and E. Wanke. How to solve NP-hard graph problems on clique-width
bounded graphs in polynomial time. Lecture Notes in Computer Science 2204 (2001).

9. M. E. Fisher. Statistical mechanics of dimers on a plane lattice. Phys. Rev. 124, pages 1664–1672
(1661).

10. U. Flarup, P. Koiran and L. Lyaudet. On the expressive power of planar perfect matching and
permanents of bounded treewidth matrices. In ISAAC 2007, 18th International Symposium on
Algorithms and Computation, volume 4835 of Lecture Notes in Computer Science, pages 124–136
Springer Verlag (2007).

11. O. Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition - relation-
ships and results for random graphs. Congressus Numerantium 132, pages 39–60 (1998).

12. E. Kaltofen and P. Koiran. Expressing a Fraction of Two Determinants as a Determinant. In ISSAC
2008, Proceedings of the 21th International Symposium on Symbolic and Algebraic Computation,
pages 141–146 ACM (2008).

13. P. W. Kasteleyn. The statistics of dimers on a lattice. Physica 27, pages 1209–1225 (1961).
14. L. Lyaudet and I. Todinca. Private communication (2007).
15. L. Lyaudet. Graphes et hypergraphes : complexités algorithmique et algébrique. Ph.D. thesis (2007).
16. J. A. Makowsky and K. Meer. Polynomials of bounded treewidth. Foundations of Computational

Mathematics, Proceedings of the Smalefest 2000, Felipe Cucker and J. Maurice Rojas, edts., World
Scientific 2002, pages 211–250 (2002).

17. G. Malod. Polynômes et coefficients. Ph.D. thesis (2003).
18. G. Malod and N. Portier. Characterizing Valiant’s Algebraic Complexity Classes. In MFCS 2006,

Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Sci-
ence, volume 4162 of Lecture Notes in Computer Science, pages 704–716 Springer Verlag (2006).

19. H. N. V. Temperley and M. E. Fisher. Dimer problems in statistical mechanics – An exact result.
Philosophical Magazine 6, pages 1061–1063 (1961).

20. S. Toda. Classes of arithmetic circuits capturing the complexity of computing the determinant.
IEICE Transactions on Information and Systems, E75-D, p. 116-124 (1992).

21. L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM Symposium on Theory of
Computing, pages 249–261 (1979).

22. L. G. Valiant. Reducibility by algebraic projections. In Logic and Algorithmic (an International
Symposium held in honour of Ernst Specker), pages 365–380. Monographie no 30 de L’Enseignement
Mathématique (1982).

23. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science 8, pages
181–201 (1979).

24. E. Wanke. k-NLC Graphs and Polynomial Algorithms. Discrete Applied Mathematics 54, pages
251–266 (1994).

6 Appendix

Theorem 14. Every arithmetic formula can be expressed as the permanent of a matrix of W -
cliquewidth at most 13 and size linear in n, where n is the size of the formula. All entries in the
matrix are either 0, 1, constants of the formula, or variables of the formula.

Proof. Let ϕ be a formula of size n. Due to [10] we know that ϕ can be expressed as the
permanent of a matrix M that has treewidth at most 2 and size at most n × n. Let G be the
underlying graph of M and let T = 〈VT , ET 〉 be the 2-tree-decomposition of G. With only a
linear increase in size of T we can assume that T is a binary tree-decomposition.

Based on the tree-decomposition T of G we construct a graph G′ of bounded W -cliquewidth
such that (with slight abuse of notation) per(G) = per(G′). A major difference between gram-
mars for bounded treewidth matrices and grammars for bounded cliquewidth matrices is that

24

we cannot “merge” two vertices into a single vertex when dealing with grammars for bounded
cliquewidth matrices. As a consequence the graphs G and G′ will not be isomorphic, but there
will be a 1 to 1 correspondence between their cycle covers.

For every non-loop edge (u, v) of G there can be multiple nodes t ∈ VT such that u and v
both are in the set Xt. We say that an edge (u, v) of G “belong” to a node t ∈ VT , if t is the node
closest to the root of T where u and v both are in Xt (for every edge such a node is uniquely
defined).

The general idea for the construction of G′ is as follows: We process T in a bottom-up
manner. For a node t ∈ VT we first construct subgraphs representing the children l and r of t,
then we add the edges belonging to t using a special labeling scheme for the vertices. We do
not have a label in the grammar for each vertex of G because this will not result in a constant
number of labels. Instead, since |Xl| ≤ 3 and |Xr| ≤ 3 we use labels to represent vertices in Xl

and Xr and reuse these labels during the processing of T .
A vertex v of G is represented through multiple vertices in G′, but only two of them are

“active” at any time during the construction of G′: One vertex of indegree 0 is managing edges
leaving v in G, and one vertex of outdegree 0 is managing edges entering v in G. Since Xl and Xr

both have size at most 3 we then need the following labels for this scheme: left-a-in, left-a-out,
left-b-in, left-b-out, left-c-in and left-c-out (and 6 similar labels for right). In addition to that we
also need a sink label, giving a total of 13 labels needed to construct G′.

Processing T to construct G′: For a leaf t of T we construct 6 vertices (or 4, if |Xt| = 2),
with the labels left-a-in, left-a-out, left-b-in, left-b-out, left-c-in and left-c-out (assuming t is the
left child of its parent). For non-loop edges belonging to node t, e.g. a directed edge from the
vertex represented with labels left-b-in/out to the vertex represented with labels left-a-in/out
of weight w, we then add edges (actually just a single edge is added because both of the labels
are only assigned to one vertex of G′) from vertices with label left-b-out to vertices with label
left-a-in of weight w. Next, if a vertex of G, e.g. the vertex represented by left-b-in/out, is not
present in Xp (p being the parent of t in T), then we add an edge of weight 1 from left-b-in to
left-b-out. Furthermore, if that vertex has a loop of weight w we add an edge of weight w from
left-b-out to left-b-in. In both cases we then rename left-b-out and left-b-in to sink.

For an internal node t ∈ VT (including the root of T) we first consider vertices of G that
are in both Xl and Xr, e.g. left-a-in/out and right-b-in/out represent the same vertex of G. We
assume that t is the left child of its parent in T . We add a loop of weight 1 to each of right-
b-in and right-b-out. Then we add an edge of weight 1 from right-b-in to left-a-in and an edge
of weight 1 from left-a-out to right-b-out. Then right-b-in and right-b-out are renamed to sink.
Next we add two vertices to G′ for every vertex in Xt that are not in Xl nor Xr. There will be
“available” in/out labels for these two vertices, since in this case at least two other vertices were
renamed to sink during processing of each child of t. Next we consider all edges of G belonging
to t. Assume there is a directed edge from the vertex represented by right-c-in/out to the vertex
represented by left-b-in/out of weight w, then we add an edge of weight w from right-c-out to
left-b-in. Last, if a vertex of G, e.g. the vertex represented by left-b-in/out, is not present in Xp

(p being the parent of t in T) or if t is the root of T then we add an edge of weight 1 from left-b-in
to left-b-out. Furthermore, if that vertex has a loop of weight w we add an edge of weight w
from left-b-out to left-b-in. In both cases we then rename left-b-out and left-b-in to sink.

Proof of correctness: A vertex v of G is represented through two disjoint sets of vertices
in G′: One set of vertices managing edges entering v in G, and one set of vertices managing
edges leaving v in G. We denote these sets of vertices in G′ as vin and vout. A vertex of G′

belong to vin if at some point during the processing of T it were assigned an in label which was

25

representing v in G. By our construction it is clear that every vertex of G′ belong to either vin
or vout for exactly 1 vertex v of G, and the set vin form a directed tree where all non-loop edges
lead towards the root and have weight 1. All non-root vertices in this tree have a loop of weight
1. The set vout has equivalent properties, with the exception that non-loop edges lead towards
the leaves instead of the root.

Now consider two vertices u and v of G along with a directed edge of weight w from u to v,
and consider the trees uout and vin in G′. At some point in the construction of G′ an edge of
weight w was added from a vertex in uout to a vertex in vin in G′, so there is a path of weight
w from the root of uout to the root of vin and all vertices of uout and vin not in this path have
a loop of weight 1. So in a cycle cover of G where we include the edge from u to v we then have
an equivalent path in G′ and all remaining vertices in uout and vin are then covered by loops.
In order to “continue” the construction of the path in G′ we then also have an edge of weight 1
from the root of vin to the root of vout. In order to simulate loops in cycle covers of G′ we have
added an edge from the root of vout back to the root of vin of same weight as the loop in G. So
a loop in G corresponds to a cycle of length 2 in G′, and then all other nodes in both vin and
vout are covered by loops of weight 1.

It is then easy to verify that cycle covers in G′ are in bijection with cycle covers of G and
the corresponding pairs of cycle covers have same weight Moreover, G′ clearly has at most 6 · n
vertices. Finally, note that between any two vertices of G′ there is at most 1 edge so we can find a
matrix M ′ such that the underlying graph of M ′ is equivalent to G′ and then per(M ′) = per(M).

ut

Theorem 15. Every arithmetic formula can be expressed as the hamiltonian of a matrix of
W -cliquewidth at most 34 and size linear in n, where n is the size of the formula. All entries in
the matrix are either 0, 1, or constants of the formula, or variables of the formula.

Proof. Let ϕ be a formula of size n. Due to [10] we know that ϕ can be expressed as the
hamiltonian of a matrix M that has treewidth at most 6 and size at most (2n+ 1)× (2n+ 1).
Let G be the underlying, weighted, directed graph for the matrix M and let T = 〈VT , ET 〉 be
the binary 6-tree-decomposition of G. With only a linear increase in size of T we can assume
that T is a binary tree-decomposition.

The overall idea is the same as in Theorem 14 - namely to process the tree-decomposition T
of G. Since all |Xt| ≤ 7 in this tree-decomposition we instead need at least 2 · 14 + 1 = 29 labels
during the processing of T to construct G′.

However, if we just use the exact same idea as in Theorem 9, then for every cycle cover in the
produced graph many vertices are covered through loops. Instead of introducing such loops we
“eliminate” them using the same idea as in [17] used for showing universality of the hamiltonian
polynomial.

We need 5 additional labels for this construction: left-h1, left-h2, right-h1, right-h2 and temp,
for a total of 34 labels. For a leaf t of T we start the processing of t by constructing two vertices
and label them left-h1 and left-h2 (assuming t is the left child of its parent in T), and add an
edge of weight 1 from left-h1 to left-h2. Remaining processing of t is done as before.

For an internal node t of T we first add an edge of weight 1 from left-h2 to right-h1, rename
left-h2 and right-h1 to sink, and rename right-h2 to left-h2 (assuming t is the left child of its
parent in T). Some vertices, e.g. the vertex with label right-c-in, may have a loop added during
the processing of t. Instead of adding such a loop we do the following: Add a new vertex with
label temp, add an edge of weight 1 from left-h2 to right-c-in, add an edge of weight 1 from

26

right-c-in to temp, add an edge of weight 1 from left-h2 to temp, rename left-h2 to sink, rename
temp to left-h2. Remaining processing of t is done as before.

When we reach the root r of T we consider any vertex of Xr, e.g. the vertex represented
by labels left-a-in/out. In the final step, instead of adding an edge of weight 1 from left-a-in
to left-a-out, we add an edge of weight 1 from left-a-in to left-h1 and an edge of weight 1 from
left-h2 to left-a-out. Now, for every hamiltonian cycle of G we break up the equivalent cycle of
G′ and visit any remaining vertices of G′ along a path of total weight 1. It can be checked that
the constructed graph has size at most 23 · (2n+ 1). ut

Theorem 16. Every arithmetic formula can be expressed as the sum of weights of perfect match-
ings of a symmetric matrix of W -cliquewidth at most 26 and size linear in n, where n is the size
of the formula. All entries in the matrix are either 0, 1, constants of the formula, or variables
of the formula.

Proof. It is a direct consequence of Theorem 14 and Lemma 2. ut

27

