
Partitions versus sets : a case of duality

Laurent Lyaudet 1

Technion – Department of Computer Science

Israel Institute of Technology, Haifa, Israel

laurent@cs.technion.ac.il

Frédéric Mazoit 2
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Abstract

In a recent paper, Amini et al. introduce a general framework to prove duality
theorems between special decompositions and their dual combinatorial object. They
thus unify all known ad-hoc proofs in one single theorem. While this unification
process is definitely good, their main theorem remains quite technical and does not
give a real insight of why some decompositions admit dual objects and why others
do not. The goal of this paper is both to generalise a little this framework and to
give an enlightening simple proof of its central theorem.

1 Introduction

In the last 30 years, many decompositions on graphs and more general struc-
tures such as tree-decompositions, branch-decompositions of graphs [RS84,RS91]

1 Part of this work was done during a post-doc at the University of Orléans. Sup-
ported in part at the Technion by a fellowship from the Lady Davis Foundation.
2 research supported by the french ANR-project “Graph decompositions and algo-
rithms (GRAAL)”
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and matroids [HW06,OS07] have been defined. Most of those decompositions
were later found dual combinatorial objects (brambles, tangles. . . ). Those ob-
jects are duals in that a decomposition exists if and only if the dual object
does not.

In [AMNT08], the authors present a general framework to prove those kind
of dual relations. The framework is the following. A partitioning tree on a
finite set E is a tree T whose leaves are identified with the elements of E

in a one-to-one way. Every internal node v of T corresponds to the partition
of E whose parts are the leaves of the subtrees obtained by deleting v. A
partitioning tree T is compatible with a set of partitions P of E if all the
node partitions of T belong to P. By carefully choosing the set P, one gets
classical decompositions. For example, let G = (V, E) be a graph. The border

of a partition µ of E is the set of vertices incident with edges in at least two
parts of µ. For every integer k, let Pk be the set of partitions whose borders
contain at most k+1 vertices. A partitioning tree is compatible with Pk if and
only if tw(G) ≤ k. Tree-width thus corresponds to a class of sets of partitions.

The dual objects of partitioning trees are brambles. A non-principal P-bramble

is a nonempty set of pairwise intersecting subsets of E that contains no sin-
gleton and which contains a part of every partition in P. Non-principal P-
brambles and partitioning trees cannot coexist but there may be none of
them. In this framework, the duality theorem between tree-decompositions
and brambles becomes: for any graph G and any k, there exists a partitioning-
tree compatible with Pk if and only if no non-principal Pk-bramble exists.

The authors try to characterise classes C of sets of partitions such that for
any P ∈ C, there is a partitioning tree compatible with P if and only if no
P-bramble does. To do so, they define classes of partition by the mean of
weight functions on partitions, and they prove that if a function is (weakly)
submodular, then the corresponding class has the required property. For ex-
ample, the weight function corresponding to tree-width (the size of the border
of a partition) is submodular. This way the authors prove all known duality
theorem to date.

While [AMNT08]’s framework unifies many ad-hoc proofs of duality between
decompositions and their dual objects, its core theorem mimics a proof of [RS91].
This proof is quite technical and does not give a real insight of why a class of
partitions leads to duality between partitioning trees and P-brambles. More-
over, at least one partition function, the function maxf that corresponds to
branch-width, is not weakly-submodular. Since this function is a limit of
weakly-submodular functions, Amini et al. manage to also apply their the-
orem to branch-width but this is not really satisfying.

The goal of this paper is twofold. First we give an easy proof of the duality
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theorem, then we slightly extend the definition of weak submodularity so that
the function maxf becomes weakly-submodular.

To do so, we consider partial partitioning trees by labelling the leaves of a tree
with the elements of any partition of E (the partitioning trees are the partial
partitioning trees whose displayed partition is made of all singletons). The
set P↑ then denote the set of all displayed partitions that arise from partial
partitioning trees compatible with P. We do not make any distinction between
principal and non principal P-brambles. Instead we define a set of small sets

to be a subset of 2E closed under taking subset, and whose elements are small.
We say that a set of partitions P↑ is dualising if for any set of small sets S,
there exists a big bramble (i.e. a bramble containing no part in S) if and only
if P↑ contains no small partition (i.e a partition whose parts all belong to
S). Thus the classical results of duality are the sub-case where S is made of
the empty set and the singletons. Note that since a P-bramble Br meets all
partitions in P, if P contains a small partition, Br cannot contain only big
parts ; a class of partitions cannot admit a big bramble and contain a small
partition.

In Section 2, we fix some notations and give basic definitions. In Section 3, we
give an equivalent and yet easier notion to duality: refinement. In Section 4,
we give a sufficient condition on P so that P↑ is refining (and thus dualising).
Finally, in Section 5, we extend the definition of weak-submodularity to match
our sufficient condition for duality, and we prove that the partition function
maxf is weakly-submodular and thus, that branch-width fully belongs to the
unifying framework.

2 Preliminaries

In this paper, E is a fixed set with at least two elements, 2E is the set of
subsets of E, and P is a set of partitions of E. Greek letters α, β, . . . denote
sets of subsets of E while capital letters A, B, . . . denote subsets of E. The
capital letters I, J are special in that they denote sets of indices. We write Xc

for the complement E \ X of X. We denote a finite union α1 ∪ α2 ∪ · · · ∪ αp

by (α1|α2| . . . |αp) and also shorten ({A}|α|{B}) in (A|α|B).

Let α = {Ai ; i ∈ I} and β = {Bj ; j ∈ J} be subsets of 2E. We say that α

is smaller than β if ∪α = ∪β and |I| ≤ |J |, and α is finer than β if ∪α = ∪β

and there exists a one to one 3 mapping f : I 7→ J such that Ai ⊆ Bf(i), for
all i ∈ I. Note that if α is finer than β it is also smaller than β. When we say
that (α1| . . . |αp) is finer or equal to (β1| . . . |βq), we mean that p ≤ q and each

3 The one to one requirement is not mandatory but it allows easier proofs.
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αi is finer or equal to βi. For any F , α \ F denotes the set {Ai \ F ; i ∈ I}.
If α is a covering of E, the overlap of α is the set ov(α) of the elements that
belong to at least two parts of α. A covering is a partition if and only if its
overlap is empty, and if α is finer than β and ov(α) ( ov(β), then it is easy
to see that α is strictly finer than β.

Note that the set P↑ of partitions labelling partial partitioning trees is exactly
the smallest superset of P such that if (α|A), (Ac|β) ∈ P↑, then (α|β) ∈ P↑.
Since the partitions in P↑ come from partial partitionning tree, it is easy to see
that for any (α|A) ∈ P↑, there exists (γ|C) ∈ P such that either (α|A) = (γ|C)
or (α|A) = (γ|µ|A) for some (Cc|µ|A) ∈ P↑. Such a (γ|C) decomposes (α|A).

A P-bramble or just bramble when no confusion can occur is a set Br of
subsets of E such that

• Br contains a part of every µ ∈ P (Br meets every µ ∈ P);
• the elements of Br are pairwise intersecting.

If Br is a P-bramble, we say that P admit the bramble Br.

Remark 1 A set Br is a P-bramble if and only if it is a P↑-bramble. Indeed,

since the elements of Br are pairwise intersecting, if Br meets both (α|A),
(Ac|β) ∈ P↑, Br cannot contain A and Ac so it meets (α|β), the forward

implication follows. The backward implication follows from P ⊆ P↑.

We can thus freely speak of a bramble for either a P-bramble or a P↑-bramble.
Moreover this remark may justify the definition of a bramble for an algorithmic
search for an obstruction could be restricted to P.

3 Dualising and refining sets of partitions

We now introduce the refining properties, and we prove that a set of partitions
is refining if and only if it is dualising. In the end, we use this equivalence on
P↑ but since the proof is not specific to P↑, we state it for P.

A class P is refining if for any (α|A), (B|β) ∈ P with A and B disjoint, P
contains a partition finer than the covering (α|β).

Theorem 2 If P is refining, then P is dualising.

PROOF. Suppose that P is refining and contains no small partition for some
set of small sets. There exists a set closed under taking superset that contains
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a big part of every partition in P. We claim that any such Br taken inclusion-
wise minimal is a big bramble. If not, take A, B inclusion-wise minimal disjoint
sets in Br. Since Br \ {A} and Br \ {B} are upward close and Br is minimal,
there exists (α|A), (B|β) ∈ P such that Br does not meet (α|β). But P is
refining and contains a λ finer than (α|β). Since Br is closed under taking
superset, λ ∩ Br is empty, a contradiction. 2

Conversely,

Theorem 3 If P is dualising, then P is refining.

PROOF. Suppose that P is not refining. Let (α|A), (B|β) ∈ P with A and B

disjoint and such that P contains no partition finer than (α|β). Consider the
small set “up to” (α|β), i.e. the set of all subsets of parts of (α|β). We claim
that P contains no small partition and that no big bramble exists. Indeed

• Since they are finer than (α|β), P contains no small partition.
• Since a bramble cannot contain both A and B, it must contain a small set

to meet both (α|A) and (B|β). 2

We would like to emphasise that we will only use Theorem 2 for this is indeed
all what is needed to obtain the duality theorems between tree-decompositions
and brambles.

We remark that in the proof of Theorem 2, the finer order need not be defined
with one to one mapping. Thus it is a corollary of Theorems 2 and 3 that the
refining property is equivalent if it is defined using a finer order with arbitrary
mapping.

4 Pushing sets of partitions

We now introduce a property on P that ensures that P↑ is refining and thus,
by Theorem 2, that P↑ is dualising.

A set of partition P is pushing if for every pair of partitions (α|A) and (B|β) in
P with Ac∩Bc 6= ∅, there exists a non empty F ⊆ Ac∩Bc with (α\F |A∪F ) ∈
P or (B ∪ F |β \ F ) ∈ P.

Theorem 4 If P is pushing, then P↑ is refining.
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PROOF. Suppose for a contradiction that P is pushing, (α|A), (B|β) belong
to P↑ with A and B disjoint, and yet P↑ contain no partition finer than (α|β).
Choose (α|β) smallest and then finest. Let O = ov((α|β)).

Let (γ|C) and (D|δ) decompose (α|A) and (B|β). Clearly Cc ∩ Dc ⊆ O. We
claim that O ⊆ Cc ∩ Dc. Indeed suppose that, say, O 6⊆ Cc. Since O ⊆ Ac,
clearly, (γ|C) 6= (α|A). Let (Cc|µ|A) ∈ P↑ be such that (γ|µ|A) = (α|A).
Since (Cc|µ|A) is smaller than (α|A), there exists (C ′|µ′|β ′) ∈ P↑ finer than
(Cc|µ|β). Since ov((γ|µ′|β ′)) ⊆ Cc, (γ|µ′|β ′) is strictly finer than (α|β), a
contradiction.

Consider (γ|C) and (D|δ). Since P is pushing and Cc ∩Dc = O is non empty,
let F ⊆ O be non empty such that say, (γ \ F, C ∪ F ) ∈ P.

• If (γ|C) = (α|A), then (γ \F |β) is strictly finer than (α|β), a contradiction.
• If (γ|C) 6= (α|A), let (Cc|µ|A) ∈ P↑ with (γ|µ|A) = (α|A). Since (Cc|µ|A)

is smaller than (α|A), there exists (C ′|µ′|β ′) ∈ P↑ finer than (Cc|µ|β). If
O 6⊆ C ′c, then (γ|µ′|β ′) is strictly finer than (α|β), a contradiction. The set
(γ \F |µ′|β ′) is thus a covering of E and since its overlap is a subset of O\F ,
it is strictly finer than (α|β), a contradiction. 2

5 Submodular partition functions

A partition function is a function from the set of partitions of E to R ∪
{+∞}. In [AMNT08], the authors define weak submodular partition functions
as partition functions such that for every partitions (α|A) and (B|β), at least
one of the following holds:

• there exists A ⊂ F ⊆ (B \ A)c with Ψ((α|A)) > Ψ((α \ F |A ∪ F ));
• Ψ((β|B)) ≥ Ψ((β \ Ac|B ∪ Ac)).

Since (β|B) and (β \Ac|B ∪Ac) are equal when Ac ∩Bc = ∅, this definition is
only really interesting when Ac∩Bc 6= ∅. We define weak submodular partition
functions as partition functions such that for every (α|A) and (B|β) with
Ac ∩ Bc 6= ∅, there exists a non empty F ⊆ Ac ∩ Bc such that at least one of
the following holds:

• Ψ((α|A)) ≥ Ψ((α \ F |A ∪ F ));
• Ψ((β|B)) ≥ Ψ((β \ F |B ∪ F )).

This definition indeed generalises the previous one.

• Suppose that there exists A ⊂ F ⊆ (B \A)c with Ψ((α|A)) > Ψ((α \F |A∪
F )). Set F ′ := F∩(Ac∩Bc). Since F = F ′∪A, (α\F |A∪F ) = (α\F ′|A∪F ′).
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Thus Ψ((α|A)) > Ψ((α \ F ′|A ∪ F ′)) with F ′ non empty.
• Suppose that Ψ((β|B)) ≥ Ψ((β \ Ac|B ∪ Ac)). Set F := Ac ∩ Bc. Since

(β \ Ac|B ∪ Ac) = (β \ F |B ∪ F ), Ψ((β|B)) ≥ Ψ((β \ F |B ∪ F )) and F is
non empty.

It is obvious that given a weak submodular partition function Ψ the class of
partitions P = {α ; Ψ(α) ≤ r}, for some r ∈ R, is pushing. Conversely if P
is pushing, then defining Ψ as Ψ(α) = 0 if α ∈ P and Ψ(α) = 1 otherwise, we
obtain a weak submodular partition function.

A connectivity function is a function f : 2E 7→ R∪ {+∞} which is symmetric
(i.e. for any A ⊆ E, f(A) = f(Ac)) and submodular (i.e. for any A, B ⊆ E,
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B)). For any connectivity function f , we
define the partition function maxf by maxf(α) = max{f(A) ; A ∈ α} (α a
partition of E).

Lemma 5 The function maxf is a weakly submodular partition function.

PROOF. Let (α|A) and (B|β) be two partitions of E such that Ac ∩ Bc is
non empty. Let F be such that A \ B ⊆ F ⊆ (B \ A)c such that f(F ) is
minimum. We claim that maxf ((α|A)) ≥ maxf ((α \ F |A ∪ F )).

Indeed, since, F ′ = F ∩A is allowed, f(F ∩A) ≥ f(F ), and by submodularity,
since f(F ) + f(A) ≥ f(A ∩ F ) + f(A ∪ F ), we have f(A) ≥ f(A ∪ F ). For
every X ∈ α, we have by submodularity of f :

f(X) + f(F c) ≥ f(X ∩ F c) + f(X ∪ F c) (1)

Since f(F ) is minimum, f(F ) ≤ f(F \ X), and thus f being symmetric:

f(X ∪ F c) ≥ f(F c) (2)

Adding (1) and (2), we obtain f(X) ≥ f(X ∩ F c). Thus maxf ((α|A)) ≥
maxf((α \ F, A ∪ F )), as claimed.

Similarly, maxf ((B|β)) ≥ maxf ((B ∪ F c|β \ F c)). Now at least one of FA :=
F ∩ (Ac ∩ Bc) and FB := F c ∩ (Ac ∩ Bc), say FA, is non empty. Since (α \
F |A ∪ F ) = (α \ FA|A ∪ FA), there exists a non empty FA ⊆ Ac ∩ Bc with
maxf((α|A)) ≥ maxf ((α \ FA, A ∪ FA)) which proves that maxf is weakly
submodular. 2
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