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1 Introduction

The ubiquity of graphs or hypergraphs in algorithmic1 and in complexity theory is notoriously
known since the origin of these problematics. One can cite the numerous data structures using
graphs (trees most of the time), flow algorithms, the many optimization problems on graphs that
are NP-complete (proper coloring, maximum clique, . . . ), the proof of polynomiality of 2−SAT,
the matroids seen as hereditary hypergraphs with an exchange axiom, etc.

This ubiquity is the consequence of apparently two opposite properties: A graph is a simple
object, hence it appears almost everywhere. It can bear very complex structures which yield
both very complex problems and very simple solutions. It is now well-known that structures ap-
pearing in random graphs are rich enough to provide simple proofs of the existence of particular
objects, which are much harder to exhibit without using the probabilistic method. Trying to cope
with this richness which is frequently the root of the NP-completeness (or worse) of numerous
graph problems, we often restrain ourselves to classes of graphs where the additional constraints
would give a loam in which intuition could germinate. This has encouraged the study of topo-
logical classes such as planar graphs or classes of graphs with bounded genus, algebraic classes
such as Cayley graphs, classes of intersection graphs such as intervals graphs, circle graphs, or
permutation graphs.

The subject of my study is the nature of the links between classes of graphs and classes of
complexity.

Hierarchical decompositions of graphs Another approach to restrain the complexity of
graphs is to decompose one graph into simple elements while preserving its connectivity. These
decompositions usually have a tree-structure. Historically, the first type of graphs decompositions
is the modular decomposition. Other well-known hierarchical decompositions are the path and
tree decompositions (re)introduced by Robertson and Seymour[23, 24] (Halin introduced tree
decompositions in 1976 with a different name [15]). Some width parameters are associated with
these decompositions that measure the “sizes” of the simple elements used to decompose the
graph.

These decompositions have a lot of applications. Indeed, Courcelle [7] showed that all decision
problems expressible in monadic second order logic (on the vocabulary τ1 or τ2) are decidable in
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linear time on classes of graphs with bounded treewidth. The vocabulary τ1 has a unique binary
relation representing the adjacency between two vertices. The vocabulary τ2 contains a binary
relation representing the incidence between a vertex and an edge, and two unary predicates
allowing to distinguish vertices and edges.

These works have been further expanded upon in two directions: Firstly these results have
been extended to optimization or counting problems by extending the monadic second order
logic with “counting operators”. Secondly a new kind of hierarchical graph decompositions, the
clique-decompositions has been introduced by Courcelle, Engelfriet and Rozenberg [8].

Graphs and complexities Since Fagin’s Theorem [13], demonstrated in 1974, we know the
importance of graphs for descriptive complexity theory. Indeed, it shows that a family of struc-
tures (its language) is in NP if and only if it is axiomatizable in existential second order logic
(on vocabularies with an order); one family of such structures can always be interpreted as a
family of graphs.

Let me say two words of algebraic complexity and more precisely Valiant’s model before
pursuing the links between graphs and complexities. While in boolean complexity we classify
languages that are sets of words on an alphabet, in Valiant’s model the alphabet is replaced by
a field K, words are replaced by polynomials over K, and languages become sequences of poly-
nomials. The complexity of these families of polynomials is not measured with Turing machines
but is measured with arithmetic circuits (directed acyclic graphs with addition or multiplication
gates). Thus the class VP (an algebraic analog of P) corresponds to the sequences of polyno-
mials of polynomial degrees computed by a sequence of arithmetic circuits of polynomial sizes.
The class VNP is an algebraic analog of NP. Another important class is the one of arithmetic
formulas (also called expressions, or terms), denoted VPe (e for expression), which corresponds
to sequences of polynomials computed by a sequence of arithmetic circuits of polynomial sizes
where the underlying graphs are trees.

This importance appears also in the numerous NP-complete graph problems as well as the
combinatorial characterizations of the most important #P-complete problems (or VNP-complete
in Valiant’s model) such as the permanent and the hamiltonian [28, 29]. These combinatorial
characterizations are frequently the bridge leading to the definition of “easy” instances for these
problems. A famous result of this kind is the result by Fisher, Kasteleyn, and Temperley in
1961 [14, 17, 26] showing that the number of perfect matchings of a planar graph can be calculated
in polynomial time using Pfaffian. Another result of this kind is by Courcelle, Makowsky, and
Rotics [10] proving that the permanent and hamiltonian2 of bounded treewidth graphs can be
efficiently evaluated.

The goal of this document is to defend the following thesis: The most significant classes of
graphs, such as planar graphs or classes defined by the boundedness of some kind of width,
are not only efficient tools to find efficient algorithms but more importantly they intrinsically
capture part of the complexity of graphs and by extension part of both algorithmic and algebraic
complexities. This should appear in the fact that the restrictions of graph problems (satisfying
certain properties) to these classes yield complete problems for natural classes of complexity.

2 but Hamiltonian polynomial according to the rules for scientific names.
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2 Algebraic complexity

In the first part of this thesis, we consider expressiveness in Valiant’s model of graph covers
restricted to particular classes of graphs. By graph cover, we mean a set of edges of a graph such
that each vertex is incident to at least one edge of the cover. The weight of a graph cover is the
product of the weights of its edges. The graph covers we study are the directed cycle covers,
the hamiltonian circuits and the perfect matchings. These three graphs covers are well-known
combinatorial characterizations of the permanent and Hamiltonian polynomials when we take
the sum of weights of all covers of a given type on a graph. Indeed, the permanent of a matrix
M is defined by the following formula

per(M) =
∑
σ∈Sn

n∏
i=1

mi,σ(i).

If mi,j is considered as the weight of the arc from vertex i to j, then the equivalence between
the permanent of M and the sum of directed cycle covers of GM is clear since any permutation
can be written down as a product of disjoint cycles and this decomposition is unique.

The Hamiltonian polynomial ham(M) is defined similarly, except that we only sum over
cycle covers consisting of a single cycle (hence the name).

The link between the permanent and bipartite perfect matchings can easily be seen if one
considers the bijection between the directed cycle covers of a graph G and the perfect matchings
of the graph G′ constructed as follows. For each vertex v of G, we create two vertices v+ and
v− in G′. For each arc from u to v with weight w, we put an edge of weight w between u+ and
v−.

2.1 Expressiveness of graph covers on graphs of bounded treewidth

We first show in Chapter 3 that the three considered graph covers capture the complexity of
arithmetic formulas when restricted to graphs of bounded treewidth. The results of this chapter
and Chapter 6 have been obtained in collaboration with Uffe Flarup and Pascal Koiran.

To prove this result, we first show that every arithmetic formula can be expressed as the sum
of directed cycle covers of a graph of treewidth 2 (Proposition 3.1.1), the sum of Hamiltonian
circuits of a graph of treewidth 6 (Proposition 3.1.2), or the sum of perfect matchings of a graph
of treewidth 2 (Proposition 3.1.4). The constructed graphs have size linear in the size of the
formula.

Conversely, we show that the sum of directed cycle covers (Proposition 3.2.4), the sum of
Hamiltonian circuits (Proposition 3.2.5), and the sum of perfect matchings (Proposition 3.2.6)
of a graph of bounded treewidth can all be evaluated by a formula of size polynomial in the size
of the graph. To prove these propositions, we exhibit in all three cases a dynamic programming
algorithm that, given a tree-decomposition of width k of the graph, constructs a circuit comput-
ing the sum of graph covers. The constructed circuit has depth O(k2 · d) where d is the depth
of the tree-decomposition. The results follow from the equivalence between arithmetic formulas
and arithmetic circuits of logarithmic depth and the following theorem of Bodlaender [3].

Theorem 1. Let G = 〈V,E〉 be a graph of treewidth k with n vertices. Then there exists a
tree-decomposition 〈T, (Xt)t∈VT

〉 of G of width 3k + 2 such that T = 〈VT , ET 〉 is a binary tree
of depth at most 2dlog 5

4
(2n)e.
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Courcelle, Makowsky and Rotics show in [10] that the three graph covers on graphs of
bounded treewidth are in VP. In fact, their construction combined with Bodlaender’s Theorem
is also a proof that these graph covers on graphs of bounded treewidth can be evaluated by
arithmetic formulas. However their more general construction (which applies to all graph covers
definable in monadic second order logic) gives circuits of size possibly super-exponential in the
treewidth whereas our more direct construction is simply exponential in the treewidth.

Combining the proofs related to bounded treewidth graphs (Proposition 3.1.1, Bodlaender’s
Theorem, and Proposition 3.2.4, for example), we can in fact give a new demonstration of Brent’s
well-known result on the parallelization of arithmetic formulas (Corollary 3.2.7). This result is
interpreted in the non-uniform Valiant’s model by the standard inclusion VPe ⊆ VNC1.

2.2 Expressiveness of graph covers on graphs of bounded pathwidth

We next show in Chapter 4 that we can restrict furthermore the class of graphs to bounded
pathwidth graphs and still capture the complexity of arithmetic formulas. The results of this
chapter and Chapter 5 have been obtained in collaboration with Uffe Flarup. While we have
already the inclusion into arithmetic formulas due to the results for graphs of bounded treewidth,
we concentrate in this chapter on proving results on the equivalence between certain types of
bounded width circuits and arithmetic formulas.

Definition 1. An arithmetic circuit ϕ has bounded width k ≥ 1 if there exists a finite set of
totally ordered layers such that:

- Each gate of ϕ is contained in exactly 1 layer.
- Each layer contains at most k gates.
- For every non-input gate of ϕ, if that gate is in some layer n, then its two inputs are in

layer n+ 1.

We first prove that the output of every weakly skew circuit of width k can be computed as
the sum of weights of directed cycle covers of a graph of pathwidth

⌊
7·k
2

⌋
−1 (Proposition 4.1.2),

the sum of weights of Hamiltonian circuits of a graph of pathwidth 7 · k+ 2 (Proposition 4.1.3),
or the sum of weights of perfect matchings of a graph of pathwidth 7 · k− 1 (Proposition 4.1.4).
These graphs have a size linear in the size of the weakly skew circuit.

Conversely, we show that the sum of directed cycle covers (Proposition 4.2.4), the sum of
hamiltonian circuits (Proposition 4.2.2), and the sum of perfect matchings (Proposition 4.2.3)
of a graph of bounded pathwidth can all be evaluated by a skew circuit of bounded width of
size polynomial in the size of the graph.

A by-product of these proofs is the equivalence between weakly skew circuits of bounded
width and skew circuits of bounded width (Corollary 4.3.1).

We prove in Theorem 4.3.3 that every arithmetic formula can be evaluated by a skew circuit
of bounded width (hence by the sum of graph covers of a graph with bounded pathwidth), and
reciprocally. Here we use the following Theorem of Ben-Or and Cleve [2].

Theorem 2. Any arithmetic formula can be computed by a linear bijection straight-line program
of polynomial size that uses three registers.

Let R1, . . . , Rm be a set of m registers, a linear bijection straight-line (LBS) program is a
vector of m initial values given to the registers plus a sequence of instructions of the form
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(i) Rj ← Rj + (Ri × c), or

(ii) Rj ← Rj − (Ri × c), or

(iii) Rj ← Rj + (Ri × xu), or

(iv) Rj ← Rj − (Ri × xu),

where 1 ≤ i, j ≤ m, i 6= j, 1 ≤ u ≤ n, c is a constant, and x1, . . . , xn are variables (n is the
number of variables). We suppose without loss of generality that the value computed by the
LBS program is the value in the first register after all instructions have been executed.

Summing our results on bounded pathwidth graphs and bounded treewidth graphs, our
results on bounded width (weakly) skew circuits (Theorem 3.0.1 and Theorem 4.0.1), Brent’s
Theorem, Ben-Or and Cleve’s Theorem, and folklore, we obtain the following theorem.

Theorem 3. Let (fn) be a family of polynomials with coefficients in a field K. The following
properties are equivalent:

– (fn) can be evaluated by a family of arithmetic formulas with polynomial sizes.

– (fn) can be evaluated by a family of arithmetic circuits with logarithmic depths.

– (fn) can be evaluated by a family of linear bijection straight-line programs with polynomial
sizes using a bounded number of registers.

– (fn) can be evaluated by a family of straight-line programs with polynomial sizes using a
bounded number of registers.

– (fn) can be evaluated by a family of skew circuits with bounded width and polynomial sizes.

– (fn) can be evaluated by a family of weakly skew circuits with bounded width and polynomial
sizes.

– There exists a family (Mn) of matrices with polynomial sizes and bounded treewidth such
that the entries of Mn are 0, 1, constants or variables of fn and fn = per(Mn).

– There exists a family (Mn) of matrices with polynomial sizes and bounded treewidth such
that the entries of Mn are 0, 1, constants or variables of fn and fn = ham(Mn).

– There exists a family (Mn) of symmetric matrices with polynomial sizes and bounded treewidth
such that the entries of Mn are 0, 1, constants or variables of fn and fn =

∑
P∈P(Mn)

W (P ),

where P(Mn) is the set of perfect matchings of GMn .

– There exists a family (Mn) of matrices with polynomial sizes and bounded pathwidth such
that the entries of Mn are 0, 1, constants or variables of fn and fn = per(Mn).

– There exists a family (Mn) of matrices with polynomial sizes and bounded pathwidth such
that the entries of Mn are 0, 1, constants or variables of fn and fn = ham(Mn).

– There exists a family (Mn) of symmetric matrices with polynomial sizes and bounded path-
width such that the entries of Mn are 0, 1, constants or variables of fn and fn =

∑
P∈P(Mn)

W (P ),

where P(Mn) is the set of perfect matchings of GMn
.3

This theorem shows that somehow the permanent and hamiltonian can not distinguish the
intrinsic complexity of bounded pathwidth and bounded treewidth graphs. A natural question
is the existence of a graph cover able to do this distinction. Let us remark that bounded width
circuits with polynomial sizes are not even in VP since the family (X2n) can be computed by such
circuits. We mention also the famous analog result in boolean complexity due to Barrington [1].

3 The last 8 properties are our results.
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2.3 Expressiveness of graph covers on graphs of bounded weighted cliquewidth

In Chapter 5, we want to study the expressiveness of graph covers on graphs of bounded
cliquewidth. But since every weighted graph can be considered as a clique (which has cliquewidth
2) where non-edges are of weight 0, by taking weighted cliquewidth as the cliquewidth of the
underlying unweighted graph, we would add no restriction and obtain VNP-complete problems.
For this reason, we define weighted cliquewidth (Definition 2.2.4), weighted NLC-width (Def-
inition 2.2.5), and weighted MC-width (Definition 2.2.6) in a different way. Since, in all three
universal algebras used to define these widths, the edges are added by “blocks of complete bi-
partite graphs”, we add the uniformity condition that all edges added by the same operation
between all vertices with label a and all vertices with label b must have the same weight. We
show that the three obtained weighted widths are still equivalent as in the unweighted case
(Theorem 2.2.8).

Contrary to what we achieved for the bounded pathwidth or treewidth graphs, we only obtain
distinct lower bounds and upper bounds to the complexity of graph covers on bounded weighted
cliquewidth graphs.

For the lower bound, we show that every arithmetic formula can be evaluated as the sum
of directed cycle covers of a graph with weighted cliquewidth 13 (Proposition 5.1.1), the sum
of Hamiltonian circuits of a graph with weighted cliquewidth 34 (Proposition 5.1.2), and the
sum of perfect matchings of a graph with weighted cliquewidth 26 (Proposition 5.1.3). For these
results, we have to modify the graphs constructed in the similar proofs for graphs of bounded
treewidth. We can not reuse the results for the bounded treewidth case.

Due to our restrictions on how weights are assigned in our definition of weighted cliquewidth
it is not true that weighted graphs of bounded treewidth have bounded W -cliquewidth. In fact, if
one tries to follow the proofs in [11, 6] that show that graphs of bounded treewidth have bounded
cliquewidth, then one obtains that a weighted graph G of treewidth k has weighted cliquewidth
at most 3 · (|WG| + 1)k−1 or 3 · (∆ + 1)k−1. WG denotes the set of weights on the edges of G
and ∆ is the maximum degree of G. Weighted trees still have bounded weighted cliquewidth
(the bound is 3), but we show in collaboration with Ioan Todinca that there exists a family of
weighted planar graphs with treewidth 2 and unbounded W -cliquewidth (Corollary B.1.4).

Alternatively, we can prove similar results (Propositions B.2.2, B.2.3, and B.2.4) with bigger
constants (22/45/44 instead of 13/34/26) bounding the weighted cliquewidth using the results
for bounded pathwidth graphs and the Lemma B.2.1 proving that every graph of pathwidth k
has weighted cliquewidth at most k + 2.

Another consequence of Lemma B.2.1 combined with the following Theorem of Bodlaen-
der [4]:

Theorem 4. Every graph G of treewidth k has pathwidth at most O(k log(n)), where n is the
number of vertices of G.

is that every graph G of treewidth k has a weighted cliquewidth at most O(k log(n)), where n is
the number of vertices of G. The family of graphs obtained in Corollary B.1.4 proves that this
bound is tight.

We show conversely that VP is an upper bound of the complexity of directed cycle covers
(Proposition 5.2.3), Hamiltonian circuits (Proposition 5.2.1) and perfect matchings (Proposition
5.2.2) of bounded weighted cliquewidth graphs. While these results seem incomplete, we don’t
have any evidence that the classes of complexity defined by these covers on graphs of bounded
weighted cliquewidth should coincide with already known classes such as VPe, VDET, or VP.
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2.4 Expressiveness of graph covers on planar graphs

We study the expressiveness of graph covers on planar graphs in Chapter 6. Here most of the work
has already been done since Bürgisser proves in [5] that the hamiltonian is still VNP-complete on
planar graphs when the characteristic of the field is distinct of 2. We remark that the complexity
of the hamiltonian on planar graphs when the characteristic is 2 is still an open problem. It
is most probably still VNP-complete since Valiant shows in [30] that counting the number of
Hamiltonian circuits of a planar graph modulo 2 is ⊕P-complete. But the parsimonious reduction
used by Valiant from #3−SAT does not give a proof of VNP-completeness in characteristic 2.

The permanent is also still VNP-complete on planar graphs by a result of Datta, Kulkarni,
Limaye, and Mahajan [12] proving the #P-completeness of the planar permanent (their proof is
easily extended to a proof of VNP-completeness). The same proof yields the VDET-completeness
of the planar permanent in characteristic 2.

The perfect matchings are here more singular since it is well-known by a result of Fisher,
Kasteleyn, and Temperley [14, 17, 26] that they can efficiently be counted by the use of Pfaffians.
In fact, the Pfaffian can still be used to evaluate the sum of weights of perfect matchings of a
planar graph.

We show the equivalence between families of polynomials generated by perfect matchings of
planar graphs and families of polynomials computed by (weakly) skew circuits of polynomial
sizes (Theorem 6.2.3). The equivalence between skew and weakly skew circuits of polynomial
sizes is proven in [27] (another proof is given in [22]). Recall that the determinant is complete
for this class of complexity, hence its name VDET.

We prove first that every skew circuit can be simulated by the sum of perfect matchings of a
planar bipartite graph of quadratic size in the size of the circuit (Proposition 6.2.4). The proof
consists to draw the circuit on the plane, then use a gadget to remove crossings and last we
show how to construct a planar bipartite graph which sum of perfect matchings is equal to the
value of the planar skew circuit. We remark that this proof can be modified to work for weakly
skew circuits as well, hence potentially giving another proof of equivalence between skew and
(weakly skew) circuits if combined with the next result.

We then show that every sum of planar perfect matchings can be computed by skew circuits
of polynomial size (Proposition 6.2.5). In fact, we prove more since we prove that every Pfaffian
can be evaluated by skew circuits of polynomial size. Then we use the result of Fisher, Kasteleyn,
and Temperley to conclude.

These results show that Pfaffian, “bipartite Pfaffian” (determinant), and “planar bipartite
Pfaffian” have the same algebraic complexity. The computational equivalence between Pfaffian
and determinant was already known since Mahajan, Subramanya, and Vinay [21] show that their
boolean complexity is in NC, more precisely they are both GapL-complete. These results qualify4

Knuth’s affirmation [19]: “[...]Pfaffians are more fundamental than determinants, in the sense
that determinants are merely the bipartite special case of a general sum over matchings[...]”.
While we can easily compute the determinant by Pfaffians using the identity

det(M) = (−1)n(n−1)/2 Pf

(
0 M
−MT 0

)
,

4 “Qualify” is the correct translation of “nuancer”, but this meaning is rarely used. Alternatively but
less precisely, one could say “slightly change”, “slightly modify”, “subtly transform”, or “refine”.
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I don’t know if there exists an identity giving easy computation of the Pfaffian by determinants.
We do have the following identity that gives us the absolute value of the Pfaffian

(Pf(A))2 = det(A).

3 Hypergraph partitioning

In the second part of this thesis, we study a variant of hypergraph partitioning. It is reasonable
to say that every “How to divide efficiently for conquering” problem can be formulated as a
hypergraph partitioning problem. Two well-known variants of this problem are the MinCutBi-
partition Problem and the MinCutBisection Problem. The former asks to minimize the weights
of hyperedges crossing a bipartition of the vertices of the hypergraph. It is well-known that this
problem can be solved in polynomial time. The later asks to minimize the weights of hyperedges
crossing a bisection (bipartition in two sets of same size) of the vertices of the hypergraph. This
problem is NP-hard. Almost all variants of hypergraph partitioning used in applications are
hence NP-hard since they give constraints or objective functions related to the size of the sets
in the partition.

We study here a purely constraint driven variant of hypergraph partitioning defined as fol-
lows.

Definition 2 (P lk problem). Given two parameters k and l, 1 ≤ l < k, the problem is: Let
H = (V, E) be a hypergraph (|V | = n and |E| = m); let t1, . . . , tk be positive integers such that

n =
∑k
i=1 ti. Does-there exist a coloring (partition) of V in k subsets of sizes t1, . . . , tk such

that the vertices of a hyperedge in E have at most l distinct colors ? We note P lk this decision
problem.

We first study these problems on arbitrary hypergraphs. We show that when l = 1 any
instance of problem P lk can be translated into an instance of k-Subset-Sum [16]. Hence P 1

k is
solvable in time O(nm+nk) (Theorem 7.2.1). Next we prove that when l > 1, P lk is NP-complete.
We use the following result of Kloks, Kratochv́ıl, and Müller.

Theorem 5. P 2
3 is NP-hard on instances with colors of equal sizes.

The problem P 2
3 is strongly related to the branchwidth problem on graphs (see [18], [20]).

In [18], Kloks et al. show that P 2
3 is NP-complete, proving in particular that the branchwidth

problem is NP-complete on splitgraphs and bipartite graphs.
We extend their NP-hardness result using two lemmas proving that:

– if P 2
k is NP-hard, then P 2

k+1 is also NP-hard (Lemma 7.2.3);

– if P lk is NP-hard, then P l+1
k+1 is also NP-hard (Lemma 7.2.5).

We conclude by the NP-completeness of the problem when l > 1 (Theorem 7.2.6).

We then study the problem on hypergraphs with disjoint hyperedges. Here we obtain a
surprising result since the complexities are inversed. A major difference lies in the size of an input.
For general hypergraphs an input has size O(mn). Since hypergraphs with disjoint hyperedges
can be seen as interval hypergraphs, an input now has size O(m log(n)). This difference yields
the NP-completeness of the problems P 1

k on this class of hypergraphs (Theorem 7.3.1) since
they contain the 2-partition problem.
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In fact the true results of this chapter are that we prove that, when l > 1, the problems P lk are
solvable in linear time. We first prove that when k − 2l < 0 the problem can be solved in linear
time (Theorem 7.3.7) using continuous colorings (Definition 7.3.4). Then we study the structure
of the solutions (Theorems 7.3.11 and 7.3.12), proving that either any continuous coloring gives
a solution, or if there is a solution, there is one where the biggest hyperedge exhausts at least one
color. We can now do an exhaustive search on this second type of solutions and exhaust colors
until we obtain an instance such that a continuous coloring is a solution or such that k− 2l < 0
(Algorithm 1). We prove that this algorithm has complexity O((k − 2l)m+ l((l− 1)kl)k) linear
in the size of an instance but exponential in parameters k and l. The complexity relatively to n
is neglected since it’s only the cost of additions and subtractions (we consider these operations
to be taking constant time, otherwise it would be a multiplicative factor of l((l − 1)kl)k)).

This result yields a polynomial time absolute approximation (+1) algorithm for minimizing
the maximum number of colors seen by a hyperedge provided that k is fixed (we do a dichotomic
search on l and the smallest l ≥ 2 such that P lk has a solution is either the minimum that we
search, or this minimum is 1 and we obtain 2).

We give further linear time results for interval hypergraphs with maximum degree 2 when
l = k − 1 and k ≥ 4 (Proposition 7.4.6). Another result of linearity is proven in [20] for P 2

3 on
this class of hypergraph with instances where all colors have the same size. We conjecture that
on the whole class of interval hypergraphs all problems P lk are NP-complete.

4 Perspectives

On the hypergraph partitioning problems P lk, there are several ways which should be investi-
gated. First, it would be interesting to know if P lk problems are always linear (polynomial) when
l > 1 on intervals hypergraphs with maximum degree d (they will always be NP-complete when
l = 1), or if the problems P lk when l 6= 1 become NP-complete as it is the case on general
hypergraphs.

In the long term, this problem could be studied on circular intervals hypergraphs or other
classes of hypergraphs with a compact encoding with logarithmic size in the number of vertices.
It would be interesting to observe the same phenomenon of complexity inversion when restricting
the maximum degree with respect to the class of general hypergraphs.

Concerning the algebraic complexity, the short-run perspectives are clear. First it is to im-
prove either the lower bound (VPe), or the upper bound (VP) on the complexity of graph
covers of bounded cliquewidth graphs. The second perspective is to study other graph covers
and graph polynomials (partial matchings or Tutte’s colored polynomial, they are both known
to be VNP-complete on general graphs) on the same graph classes.

Arriving at the end of this document, I must note that I have only partly defended the thesis
presented in introduction: The most significant classes of graphs capture an intrinsic part of
the complexity of graphs and by extension an intrinsic part of the algorithmic and algebraic
complexities. Indeed, our links between classes of complexity and classes of graphs are only
obtained relatively to a few kinds of graph covers (even if they are the most fundamentals of
the domain). The long-term perspectives of this work are to bound or even measure this bias.
I will attempt to suggest some types of results that would constitute a much more general and
stronger defense for this thesis.

This thesis is somewhat true for “coarse-grained complexity”, i.e. decidability, since we know
that a class of graphs has decidable monadic second order logic:
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– on vocabulary τ2 only if it has bounded treewidth (Seese [25]);
– on vocabulary τ1 with even cardinality predicates only if it has bounded cliquewidth (Cour-

celle and Oum [9]).5

The same question is still open for first order logic.
In his habilitationschrift, Bürgisser presents the unifying concept of generating function of a

graph property. He defines a graph property as a set E of finite graphs closed by isomorphism.
The generating function of a graph property on the graph G = (V,E) is defined by

GF(G, E) =
∑
E′⊆E

w(E′),

where the sum is on all subsets of edges E′ such that (V,E′) ∈ E . Here again the weight w(E′)
of a set of edges is defined as the product of the weights of the edges.

Thus one can define the permanent as the generating function of the graph property “to be
a disjoint union of circuits” taken on the family of weighted cliques GXn where the arc from i to
j has weight Xi,j . In the same way the hamiltonian can be defined as the generating function
of the graph property “to be a circuit” taken on the family of weighted cliques GXn .

We can extend this definition to consider a generating function on a matrix over K by
replacing a weighted graph by its adjacency matrix but more importantly we can consider the
generating function of a logical formula φ on vocabulary τ1 or τ2 :

GF(G,φ) =
∑
E′⊆E

w(E′),

where the sum is on all subsets of edges E′ such that (V,E′) is a model of φ. This possibility
enables us to define the permanent as a first order generating function over τ1. Indeed the
property “to be a disjoint union of circuits” is expressed by the local condition “every vertex
has a unique inner neighbor and a unique outer neighbor” translated in the following formula

φ1 = ∀x, [(∃y,Adj(x, y) ∧ (∀z,Adj(x, z)⇒ y = z))

∧ (∃u,Adj(u, x) ∧ (∀v,Adj(v, x)⇒ u = v))].

One can also define the permanent with perfect matchings taken on complete bipartite
graphs. This is also a first order generating function over τ1. The formula is even simpler because
we only need to say that each vertex has a unique neighbor:

φ2 = ∀x, [∃y,Adj(x, y) ∧ (∀z,Adj(x, z)⇒ y = z)].

In the undirected case, we suppose that the relation Adj is symmetric.
The hamiltonian is more complex from a logical point of view since connectivity between

two vertices can only be checked using a path (i.e. a set of arcs or vertices). Hence we need to
use monadic second order logic on the vocabulary τ2 (or τ1).6

With all this concepts, we can now give the idea of results being real evidences of my thesis.
These are of the following type.

5 In both cases, it is “if and only if” when considering certain “regular” classes of graphs defined with
HR or VR grammars.

6 On τ2 one obtains the formula:

φ3 = ∀x ∈ V, [(∃y ∈ V,Adj(x, y) ∧ (∀z ∈ V,Adj(x, z)⇒ y = z))
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Imaginary theorem 1 Every generating function of logic XO satisfying the conditions C is
VX-complete on graphs with bounded XL width.

These kinds of theorems with holes are a bit confusing. Here is a more concrete example, one
can choose for logic XO the monadic second order logic on vocabulary τ2, a set of conditions
C equal to “being VNP-complete on general graphs”, VX = VPe and XL = treewidth. One
obtains:

Imaginary theorem 2 Every generating function of monadic second order logic on vocabulary
τ2, VNP-complete on general graphs is VPe-complete on graphs with bounded treewidth.

We note that this kind of theorem seems unlikely for planar graphs, even for first order logic.
Indeed, the results of chapter 6 show that the combinatorial interpretations of the permanent are
one VNP-complete, the other VDET-complete on planar graphs. Hence, except if VDET = VNP
or if we find a pertinent set of conditions C able to distinguish formula φ1 and formula φ2, we
must renounce this way for planar graphs. (It is possible that a set of conditions C which
distinguish whether relation Adj is symmetric or not works, but it needs to be verified.)

For these imaginary theorems, one of the difficulties will certainly reside in the variation
of complexity of a generating function according to the characteristic of field K, as for the
permanent which is VDET-complete in characteristic 2 and VNP-complete otherwise. It will
probably be easier to restrict to fields with characteristic 0.

Of course restraining to algebraic complexity is not sufficient; one will need similar results
for the boolean complexity. These are of the following type.

Imaginary theorem 3 Every decision problem expressible in logic XO satisfying the condi-
tions C is X-complete on graphs with bounded XL width.

Once again we take as an example, XO equals to the monadic second order logic on vocab-
ulary τ2, a set of conditions C equals to “being NP-complete on general graphs”, X = NC1 and
XL = treewidth. One obtains:

Imaginary theorem 4 Every decision problem expressible in monadic second order logic on
vocabulary τ2 and NP-complete on general graphs is NC1-complete on graphs with bounded
treewidth.

The choices of VPe = VNC1 and NC1 in both examples are a consequence of Bodlaender’s
theorem on tree decompositions of logarithmic depth.

I will close this session of imaginary theorems by a dichotomy theorem for generating func-
tions of first order, which would give an algebraic analog to Schaeffer’s theorem.

Imaginary theorem 5 Every first order generating function is VNP-complete (on a field of
characteristic 0?) on general graphs if and only if it satisfies the conditions C. Otherwise, it is
in VP (VPe ?).

I hope all this theorems will be the subject of my future research.

∧ (∃u ∈ V,Adj(u, x) ∧ (∀v ∈ V,Adj(v, x)⇒ u = v))]

∧ ∀x, y ∈ V, [∃C ⊆ E,∀e ∈ C,
((Inc(x, e) ∨ (∃f ∈ C, z ∈ V, Inc(z, e) ∧ Inc(f, z)))

∧((Inc(e, y) ∨ (∃f ∈ C, z ∈ V, Inc(e, z) ∧ Inc(z, f))))],

where the adjacency relation Adj is defined as a “macro” using the incidence relation Inc.
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