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Abstract

In this article, we study twin-width and merge-width of binary structures under
the light of first difference principle.
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1 Introduction
In this article, we continue our work of contextualisation of many graphs or binary
structures widths in the framework of first difference principle. This work started in
Lyaudet (2020). Before that, following Cantor (1895), Hausdorff (1907) et Sierpiński
(1932), we started to study the first difference principle in Lyaudet (2018), Lyaudet
(2019). We show that twin-width (introduced in Bonnet et al. (2020)) and merge-width
(introduced in Dreier and Toruńczyk (2025)) fit very naturally in the framework of first
difference principle.

2 Common definitions
For twin-width as well as for merge-width, we need the first difference principle ex-
tended with the special constant adjacency type nyf (not yet fixed). (There is also a
special constant adjacency type alf (already fixed). We published both for the first time
in Lyaudet (2020), but the idea of these two special adjacency types dates from the
end of 2019, and alf is implicit in the definition of tree-questionable-width in Lyaudet
(2019).)

Consider a binary signature S of unary and binary relations and functions. Given
a set S, an (S, S, k, l)-mapping-run is an (ordinal-indexed) sequence (Si)i∈l of length
l of S-structures of cardinality at most k, k being the lowest such cardinal, together
with a sequence of mappings fi from S to the domains of Si structures. Each Si is an

*https://lyaudet.eu/laurent/, laurent.lyaudet@gmail.com

1

https://lyaudet.eu/laurent/


S-structure-item (of the mapping-run/the (Si)i∈l sequence). Each element/vertex x of
S is thus associated to a sequence (xi = fi(x))i∈l; this sequence is an “element” of
the mapping-run/the (Si)i∈l sequence; it corresponds to an element/vertex of S; each
xi = fi(x) is an element/vertex-item.

Definition 2.1 (nyf-extended question). Given two elements X,Y of a mapping-run,
we say that (q, xq, yq, Sq) is the question of X,Y , if q is the smallest ordinal such that
xq ̸= yq and the adjacency type between xq and yq is not nyf .

3 Twin-width
Definition 3.1 (Twin-width). A twin-decomposition of an S-structure S is a sequence
of S-structures indexed by an ordinal (Si)i∈l+1 such that S0 = S and Sl is a singleton.
We always go from Si to Si+1 by a unique merging/contraction of two vertices of Si

into one. Given two vertices x, y ∈ Si, we say the edge between these vertices is
red if the adjacencies in the starting binary structure are of at least two distinct types
between the vertices corresponding to f−1

i (x) and those corresponding to f−1
i (y).

The maximum red degree of an S-structure Si is equal to the supremum of the degrees
of its vertices when we only keep the red edges. The width of a twin-decomposition
(Si)i∈l+1 is equal to the supremum of the maximum red degrees of the Si. The twin-
width of an S-structure S, denoted by tww(S), is the minimum of the widths of all its
twin-decompositions.

If we do not focus on the size of the structure-items, but look instead at the de-
gree of the nyf adjacencies, the equivalence with nyf-extended first difference prin-
ciple is quite clear. We only need to reverse the decomposition to consider separa-
tions/splitting.

Definition 3.2 (Twin-questionable-width). A twin-questionable-decomposition of an
S-structure S is an (S, S, k, l + 1)-mapping-run (a sequence of S-structures indexed
by an ordinal (Si)i∈l+1) such that S0 is a singleton and Sl = S. We always go from Si

to Si+1 by a unique separation/splitting of a vertex of Si in two vertices. The maximum
nyf degree of an S-structure Si is equal to the supremum of the degrees of its vertices
when we only keep the nyf edges. The width of a twin-questionable-decomposition
(Si)i∈l+1 is equal to the supremum of the maximum nyf degrees of the Si. The twin-
questionable-width of an S-structure S, denoted by twqw(S), is the minimum of the
widths of all its twin-questionable-decompositions.

Theorem 3.3. The twin-width is equal to the twin-questionable-width.

4 Merge-width
Definition 4.1 ((Weak) merge-width). Fix a vertex set and an S-structure S. A con-
struction sequence is a sequence of steps, maintaining a partition P of S and a par-
tition of

(
S
2

)
into two sets: resolved “edges” R with a given adjacency type (it can

correspond to edges and non-edges of a graph), and unresolved pairs U . Initially, P
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partitions S into singletons, and every pair in
(
S
2

)
is unresolved. In each step, one of

two operations is performed:

• merge two parts X,Y ∈ P , replacing the two parts by their union,

• resolve a pair of parts X,Y ∈ P by a given adjacency type (possibly X = Y
except in the weak case), declaring all the unresolved pairs {a, b} ∈ U with
a ∈ X et b ∈ Y to be of the chosen adjacency type, that is, moving them from U
to R.

In the end, we require that P has one part, and that every pair from
(
S
2

)
is resolved

with a valid adjacency type. We thus say this is a construction sequence of S. The
radius-r width of a construction sequence is the least number k such that at every step
in the sequence, the following holds: For every vertex v ∈ S, at most k parts of the
current partition P can be reached from v by a path of length r in the graph of the
currently resolved adjacencies. The radius-r merge-width of S, denoted by mwr(S)
or wmwr(S) in the weak case, is the least radius-r width of a construction sequence
of S. Finally, a graph class C has bounded merge-width, resp. bounded weak-merge-
width, if mwr(C) < ∞, resp. wmwr(C) < ∞, for all r ∈ N, where mwr(C) =
supS∈C mwr(S), resp. wmwr(C) = supS∈C wmwr(S).

This is a naming problem:

• R for resolved corresponds to A for alf .

• U for unresolved corresponds to N for nyf . Unresolved is just another word for
nyf .

Here again, if we do not focus on the size of the structure-items, but look instead
the condition on the size of the non-nyf balls, the equivalence with nyf-extended first
difference principle for the weak-merge-width is very clear. For the merge-width, we
need an extension that is bordeline first difference principle:

Definition 4.2 (nyf-pure question). Given two elements X,Y of a mapping-run, we
say that (q, xq, yq, Sq) is the question of X,Y , if q is the smallest ordinal such that
the adjacency type between xq and yq is not nyf . If xq = yq , we are looking at
the adjacency type on a loop ; it can only work for symmetric adjacency types ; in
particular, the merge-width of directed graphs is downgraded to weak-merge-width.

All the other definitions of question can be simulated by this one with the conven-
tion that the loops have only the nyf adjacency type. It makes us lose the possibility
to consider that the loops on the Si are only here to fix the loops of S. This is not a
problem in the case of merge-width, because we start with all vertices separated; they
can thus receive their loops by questionability with S0, and after that the loops of the
Si only fix adjacencies between vertices.

Definition 4.3 ((Weak) merge-questionable-width). Let S be a set of vertices and an
S-structure. A merge-questionable-decomposition is an (S, S, p, l)-mapping-run, a
sequence of S-structures indexed by an ordinal (Si)i∈l+1 such that S0 = S and Sl
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is a singleton. We always go from Si to Si+1 by a unique merging/contraction of two
vertices of Si into one.

The radius-r width of a merge-questionable-decomposition of S is the smallest
number k such that at each step i, it is true that: For each vertex v ∈ S, at most
k vertices of Si can be reached from v by a path of length at most r in the graph
of adjacencies that were fixed until now: by the nyf-extended first difference princi-
ple in the weak-case, by the nyf-pure questionability otherwise. The radius-r merge-
questionable-width of S, denoted by mqwr(S) or wmqwr(S) in the weak case, is the
smalled radius-r width among the merge-questionable-decompositions of S. Finally,
a graph class C has bounded merge-questionable-width, resp. bounded weak-merge-
questionable-width, if mqwr(C) < ∞, resp. wmqwr(C) < ∞, for all r ∈ N, where
mqwr(C) = supS∈C mqwr(S), resp. wmwr(C) = supS∈C wmqwr(S).

Theorem 4.4. The radius-r merge-questionable-width is equal to the radius-r merge-
width. Hence, the merge-width is bounded if and only if the merge-questionable-width
is bounded.

Theorem 4.5. The radius-r weak-merge-questionable-width is equal to the radius-r
weak-merge-width. Hence, the weak-merge-width is bounded if and only if the weak-
merge-questionable-width is bounded.

We are almost certain that the graphs of bounded degree do not have bounded
weak-merge-width, although they have bounded merge-width. But we don’t have yet a
formal proof of this conjecture.

The graphs of bounded degree have also a bounded bijective balanced tree-questionable-
width (see Lyaudet (2022)); but this is not the case with the twin-width. It would be
interesting to know how the twin-width and the (weak) merge-width compare to the
distinct variants of tree-questionable-width (see Lyaudet (2025b)).

These translations of widths in the framework of first difference principle or nyf-
pure questionability may seem inconsequential. But these translations can be expressed
themselves in some logics, and they operate only on sequences of elements, hence on
structures of “paths” and not more complicated graphs. It is possible that more general
results on the first difference principle or the nyf-pure questionability enable to classify
the complexity of computing these various widths, between those that are in P or NC,
or those that are NP-hard with or without approximation algorithms, etc.
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