
On tree-width and tree-questionable-width

Laurent Lyaudet*

June 6, 2025

Abstract

In this note, we show that graph classes of bounded tree-width have bounded
bijective balanced tree-questionable-width.
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1 Introduction
Tree-width was introduced in Robertson and Seymour (1986) and Halin (1976). (Bal-
anced) (bijective) tree-questionable-width was introduced in Lyaudet (2019). We showed
in Lyaudet (2019) that if we allow non-bijective tree-questionable-decompositions,
then a tree decomposition of a graph can be converted into a non-bijective tree-questionable-
decomposition of roughly the same width and depth. This result associated with Bod-
laender’s theorem (Bodlaender (1988)) which gives a tree decomposition of logarith-
mic depth gives us a non-bijective balanced tree-questionable-decomposition of bounded
width. We asked in Lyaudet (2019): how these two graph invariants compare if we
enforce that the tree-questionable-decomposition is bijective. In this note, we pub-
lish our result, obtained during the 2020 pandemic, announced at J.G.A. 20231 which
shows that graph classes of bounded tree-width have bounded bijective balanced tree-
questionable-width.

2 Definitions
The tree decomposition/width of a graph are sufficiently known to avoid giving their
definition in this note.

Let V be a set of vertices, a (V, k)-mapping-run is a sequence of mappings from V
to vertices of binary structures of cardinality at most k (the image binary structure is
fixed per mapping).
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Definition 2.1. Let S be a binary structure. A bijective (k, α, β)-tree-questionable-
decomposition of S is a triplet (T, ll, nl) (T as tree, ll as leaf labels et nl as node
labels):

• T is a rooted binairy tree;

• leaves of T are in bijection, through the function ll, with vertices of S;

• hence, each internal node node is associated to the subset of vertices of S union
of the values ll(l) for all leaves l under the node node; it defines ll(node);

• nl is a mapping with domain the internal nodes of T , such that nl(node) is an
(ll(node), k)-mapping-run,

• as a consequence, each vertex of S corresponds to a sub-tree (that is a path in
the bijective case) of T , and since the intersection of two trees, resp. paths, is a
tree, resp. path, we also get a path corresponding to all couple of vertices (x, y).
Thus, we can define the ({x, y}, k)-mapping-run obtained by concatenating the
(ll(node), k)-mapping-runs restricted to {x, y}, and we enforce that the first
difference between the images of x and y in this mapping-run exists and that it
corresponds to two vertices of same adjacency type as between x and y;

• α is the depth of the tree T ;

• β is the depth of the extended tree T ′ obtained by replacing each internal node
by a path of nodes (one for each mapping of the mapping-run associated to the
original node).

k is called the width of the decomposition; α is called the structural depth of the de-
composition; β is called the logical depth of the decomposition.

Lemma 2.2 (7.7 in Lyaudet (2019)). If a finite binary structure has a tree-decomposition
of width k and depth d, it has a non-bijective (k + 2, d + 1, d)-tree-questionable de-
composition.

3 Result
Lemma 3.1. If a finite binary structure with p distinct adjacency types has a binary
tree-decomposition of width k and depth d, it has a bijective (2,≤ d× (k + 2) + k,≤
p× (d× (k + 1) + (k − 1)) + d+ 1)-tree-questionable-decomposition.

Proof:

Starting from a rooted binary tree-decomposition of width k, as each vertex x of
the binary structure is associated to a sub-tree of the tree-decomposition corre-
sponding to the bags containing it, we can map each vertex to the node Nroot(x)
of the tree-decomposition in this sub-tree that is closest to the root. This node
Nroot(x) is unique, it will guarantee that the tree-questionable-decomposition is bi-
jective. Moreover, since the bags contain at most k + 1 vertices, |{y;Nroot(y) =
Nroot(x)| ≤ k + 1.
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Then, to a leaf l of the tree-decomposition, we associate a comb of depth k that
adds, one after the other, the k + 1 vertices y such that Nroot(y) = l. To a binary
internal node n of the tree-decomposition with sons n1 and n2, we associate first a
fusion internal node that connects the two combs coming from n1 and n2, then we
associate a comb of depth k + 1 that adds, one after the other, the k + 1 vertices y
tels que Nroot(y) = n. Hence, the structural depth is ≤ d× (k + 2) + k.

On the first internal node of a comb coming from a leaf, we put a mapping-
run with a unique mapping to a binary structure of size 2 that fixes the adjacency
type between the first two vertices taken from the bag of the leaf. The two ver-
tices of S are sent to the two vertices of the binary structure of size 2. Otherwise,
on each internal node of a comb, we put a mapping-run toward at most p binary
structures of size 2 to fix the adjacency types of the current vertex with the binary
structure constructed below in the decomposition. In each of the p mappings, the
vertex currently added x has same image as the already added vertices that have
an adjacency type with x distinct from the adjacency type of the current binary
structure of size 2; and the already added vertices that have an adjacency type with
x equal to the adjacency type of the current binary structure of size 2 are sent on
the other vertex of the current binary structure of size 2. Last, on each fusion in-
ternal node, we put a mapping-run with a unique mapping to a binary structure
of size 2 with the default adjacency type of the tree-decomposition (non-adjacent
in the standard case of graphs); the vertices coming from n1 are sent to the first
vertex of the binary structure of size 2; the vertices coming from n2 are sent to
the second vertex of the binary structure of size 2. Hence, the logical depth is
≤ 1+ (k− 1)× p+(k+1)× d× p+ d = p× (d× (k+1)+ (k− 1))+ d+1.

Again, from Bodlaender (1988), we deduce:

Corollary 3.2. If a class of binary structures has bounded tree-width, it has bounded
balanced bijective tree-questionable-width.
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